
- •Органолептический анализ. Классификация его видов.
- •Основы визуального органолептического анализа.
- •Основы обонятельного анализа.
- •Основы вкусового анализа.
- •Основы осязательного анализа.
- •Подбор дегустаторов. Требования, предъявляемые к ним.
- •Оценка сенсорной чувствительности.
- •10.Метод предпочтения.
- •11.Методы сравнения
- •12 Методы балльной оценки.
- •13.Классификация оптических методов. Их характеристики.
- •14.Физические основы рефрактометрии.
- •15. Определение строения вещества с помощью коэффициента преломления.
- •16.Принцип действия рефрактометров.
- •17.Схема прохождения света в рефрактометре Аббе.
- •18. Схема рефрактометра ран. Принцип работы.
- •19.Практическое применение рефрактометров.
- •20.Поляризованный свет.
- •21. Оптически активные вещества.
- •Характеристика оав
- •23.Схема прохождения света при проведении поляриметрического анализа.
- •24.Сущность нефелометрического и турбидиметрического анализов.
- •25. Приборы для нефелометрического анализа.
- •Принцип работы.
- •26. Применение нефелометрического и турбидиметрического анализов.
- •27. Устройство и принцип работы фотонефелометра.(фн-р)
- •28. Основы спектроскопии.
- •29. Классификация спектр.Методов:
- •30. Основы теории оптических атомных спектров. Строение оптических спектров.
- •31.Схема энергетических состояний атомов.
- •32. Спектр поглощения и излучения химических элементов.
- •33.Основы теории молекулярных спектров.
- •34. Физические основы фотометрии
- •35. Виды спектров в фотометрии.
- •36. Количественный фотометрический анализ.
- •37. Приборы для фотометрического анализа
- •38. Применение фотометрии.
- •39. Физические основы ик-спектроскопии.
- •40.Основные характеристики ик-спектров.
- •41.Подготовка проб к анализу в ик-спектроскопии.
- •42.Особенности конструкций ик-спектрометров.
- •43.Интерпритация ик-спектров.
- •44.Физические основы люминисценции.
- •45.Люминисцентный анализ.
- •46.Возникновение люминисценции.
- •47.Электронные спектры поглощения и спектры люминесценции (излучения)
- •48. Выход и гашение люминесценции
- •49. Качествен.И количествен. Люминесцентный анализ.
- •51.Блок-схема атомно-эмиссионного спектрометра
- •52.Устройство атомизации вещества и возбуждения спектров
- •54Лампа с полым катодом
- •55.Индуктивно-связанная плазма (исп)
- •56.Анализаторы (монохроматоры)
- •57.Способы детектирования излучения.
- •58.Фотоэлектрическое детектирование.
- •59.Расшифровка спектров атомной эмиссии.
- •60.Структура атласа спектров и таблиц спектральных линий. Аналитические линии спектра элемента.
- •61.Количественный атомно-эмиссионный анализ. Способы оценки интенсивности спектральных линий
- •62.Фотометрия пламени.
- •75,Детекторы, газоразрядная трубка, полупроводниковый детектор.
- •76, Качественный и количественный рентгеноспектральный анализ и его применение
- •77.Оптическая микроскопия. Подготовка образцов.
- •78. Устройство и принцип действия оптических микроскопов.
- •79. Разрешающая способность микроскопа.
- •80. Количественная металлография. Точечный, линейный и плоскостной анализы структуры материала
- •81. Устройство и принцип действия электронного микроскопа
- •82. Получение изображения в электронном микроскопе
- •83. Подготовка образцов для просвечивающей микроскопии
- •84. Схема растрового электронного микроскопа
- •85. Термический анализ
- •86. Дифференциальный термический анализ.
- •87. Дифференциальные кривые нагревания.
- •89.Термогравиметрический анализ.(тгма)
- •90. Диф. Термогравиметрическая кривая (дтг)
- •93,94. Качественный и количественный термический анализ. Определение чистоты хим. Веществ методом дта (дифференциальный термический анализ).
- •98. Сенсоры на основе мдп-структур
- •99.Тепловые сенсоры. Термокаталитические сенсоры
34. Физические основы фотометрии
При образовании мол-л из атомов внешние атомные орбитали перестраиваются. При этом внешние атомные орбитали перестраиваются, при этом изменяются их энергетические уровни и образуются молекулярные орбитали. В зав-ти от того, какие атомы участвуют в образовании мол-л, могут образовываться различные по энергетич. уровню молек-ые орбитали типа δ, π.
Мол-лы с δ-связями имеют цилиндрич.симметрию, кот соединяет атомы.
Мол-лы, с π-связями имеют симметрию относительно плоскости, кот проходит через центры атомов.
При отсутствии внешн. воздействий мах электронные плотности в δ и π-связях находятся между ядрами. Электронная плоскость мах-ая между ядрами, кот стягивает их. Поэтому эти связи назыв.стягивающими.
При взаимодействии электронных оболочек с их мол-ами их орбитали могут изменятся, а именно мах электронная плотность смещается к наружной стороне ядра. Таким образом увеличивается отталкивающая сила между ядрами. В этом случае образуются разрыхляющие орбитали, кот назыв δ* и π*
При помощи электро-магн излучений, УФ и видимого диапазона происходят электронные переходы с одних молек орбиталей на др. Следует отметить что наиб разность энергии имеют переходы с δ на δ*. Орбитали поэтому в спектре поглощаются. Полоса поглощ-я наблюд в коротковолновой области. Переходы с π-орбтали на π* происходят при поглощении меньшей, но достат-но высокой энергии, поэтому спектральные линии наблюд в обл-ти среднего УФ.
35. Виды спектров в фотометрии.
Графическое изображения распред-я поглощаемой энергии по длинам волн вызывается спектром поглощ вещ-ва. Виды спектров зависят от величин, кот откладываются на ОХ и ОУ.
Как правила. На ОХ- длина волны (λ), частоту (ð) либо волновое число (ω), а по ОУ откладывается оптич плотность (Д), log Д отражен в % (Т%) либо коэф-т поглощения (ε). Вид этих спектров в зав-ти от системы координат может быть:
В зав-ти от log оптич плотности, это будет выглядеть наоборот.
В зав-ти от коэф-та поглощения могут наблюдаться несколько мах:
Так как поглощаемая энергия приводит не только к изменению электронных, но и колебат. и вращат. состояний поглощаемых молекул, то наблюдаются спектры поглощения. Они предст собой широкие полосы с одним или несколько мах-ми в непрерывной области поглощениями, либо несколькими мах-ми в различных областях, разделенные областями пропускания.
Полосы поглощ-ия в электронном спектре характ-тся длиной волны λМАХ и интенс-тью, кот измеряются в этом мах-ме. Положение полосы на шкале длин волн опред-тся разностью энергий состояния до и после перехода. К сожалению проводить качеств.анализ только по спектру поглощ-ия невозможно, потому что полосы поглощ-ия различных химических вещ-в перекрываются и сильно искажаются, а также смещаются под действием растворителя.
36. Количественный фотометрический анализ.
Для колич-ого анализа фотометрия используется широко. В большинстве случаев колич. фотометр.анализ основан на переводе определенного компонента в соединение, кот поглощает УФ или дневной свет. При этом измеряют оптич плотность или коэф-т пропускания(поглощ-ия) этого р-ра на длине волны, кот соответствуют мах поглощения (пропускания).
Так как оптич плотность Д анализ-го р-ра связана с его концентр-ей законом Бугера-Ламберта-Бера:
Д=ελ*с*l1 где ελ – молек-ый коэф-т поглощ-ия (л/моль*см), l- толщина слоя(кюветы) (см)
Таким обр располагая оптич плотностью Д, ελ, l легко определить конц-цию. Из выше формулы видно, что при постоянной толщине слоя р-ра (l) завис-ть между Д и с прямопропорц-а. Следует отметить, что в реальности с-мах это пропорц-сть не соблюдается, поэтому при проведении колич. анализа всегда проводят проверку соблюдения закона светопоглощения.