
Типовая схема фрактального сжатия
схема компрессии выглядит так: изображение R разбивают на кусочки ri, называемые ранговыми областями. Далее для каждой области ri находят область di и преобразование wi такие, что выполняются следующие условия:
di по размерам больше ri.
wi (ri) имеет ту же форму, размеры и положение, что и ri.
Коэффициент u преобразования wi должен быть меньше единицы.
Значение должно быть как можно меньше.
Первые три условия означают, что отображение wi будет сжимающим. А в силу четвёртого условия кодируемое изображение R и его образ W (R) будут похожи друг на друга. В идеале R = W (R). А это означает, что наше изображение R и будет являться неподвижной точкой W. Именно здесь используется подобие различных частей изображения (отсюда и название – «фрактальная компрессия»). Как оказалось, практически все реальные изображения содержат такие похожие друг на друга, с точностью до аффинного преобразования, части.
Таким образом, для компрессии изображения W нужно:
Разбить изображение на ранговые области ri (непересекающиеся области, покрывающие все изображение).
Для каждой ранговой области ri найти область di (называемую доменной), и отображение wi, с указанными выше свойствами.
Запомнить коэффициенты аффинных преобразований W, положения доменных областей di, а также разбиение изображения на домены.
Соответственно, для декомпрессии изображения нужно будет:
Создать какое-то (любое) начальное изображение R0.
Многократно применить к нему отображение W (объединение wi).
Так как отображение W сжимающее, то в результате, после достаточного количества итераций, изображение придёт к аттрактору и перестанет меняться. Аттрактор и является нашим исходным изображением. Декомпрессия завершена.
Оценка потерь и способы их регулирования
До сих пор мы не затронули несколько важных вопросов. Например, что делать, если алгоритм не может подобрать для какого-либо фрагмента изображения подобный ему? Достаточно очевидное решение - разбить этот фрагмент на более мелкие и попытаться поискать для них. Однако понятно, что процедуру эту нельзя повторять до бесконечности, иначе количество необходимых преобразований станет так велико, что алгоритм перестанет быть алгоритмом компрессии. Следовательно, допускаются потери в какой-то части изображения.
Для фрактального алгоритма компрессии, как и для других алгоритмов сжатия с потерями, очень важны механизмы, с помощью которых можно будет регулировать степень сжатия и степень потерь. К настоящему времени разработан достаточно большой набор таких методов. Во-первых, можно ограничить количество преобразований, заведомо обеспечив степень сжатия не ниже фиксированной величины. Во-вторых, можно потребовать, чтобы в ситуации, когда разница между обрабатываемым фрагментом и наилучшим его приближением будет выше определенного порогового значения, этот фрагмент дробился обязательно (для него обязательно заводится несколько линз). В-третьих, можно запретить дробить фрагменты размером меньше, допустим, четырех точек. Изменяя пороговые значения и приоритет этих условий, можно очень гибко управлять коэффициентом компрессии изображения: от побитного соответствия, до любой степени сжатия.