
- •§ 7.1. Призначення і принцип дії електричних машин
- •§ 7.2. Електричні машини постійного струму
- •7.2.1. Принцип дії та будова машини постійного струму
- •7.2.2. Електрорушійна сила якоря, електромагнітний момент і потужність машини
- •7.2.3. Втрати і коефіцієнт корисної дії
- •7.2.4. Схеми вмикання обмоток збудження. Номінальні величини і характеристики електричних машин
- •7.2.5. Генератори постійного струму
- •7.2.6. Робота машини постійного струму в режимі двигуна
- •§ 7.3. Електричні машини змінного струму
- •7.3.1. Обертове магнітне поле
- •7.3.2. Будова і принцип дії асинхронного двигуна
- •7.3.3. Електрорушійні сили, струми та обертовий момент асинхронного двигуна
- •7.3.4. Пуск та регулювання частоти обертання асинхронних двигунів
- •7.3.5. Втрати, коефіцієнт корисної дії та коефіцієнт потужності асинхронного двигуна
- •Pис. 7.20. Енергетична діаграма асинхронного двигуна.
- •7.3.6. Однофазний асинхронний двигун
- •7.3.7. Синхронні машини
- •§ 7.4. Електричні машини малої потужності
- •§ 7.5. Інформаційні електричні мікромашини
- •§ 8.1. Загальні відомості про електричні апарати
- •§ 8.2. Рубильники, вимикачі та перемикачі
- •§ 8.3. Запобіжники
- •§ 8.4. Автоматичні вимикачі
- •§ 8.5. Електромагнітні виконавчі пристрої
- •§ 8.6. Електромагнітні пускачі
- •§ 8.7. Електричні реле
- •§ 9.1. Електричні станції
- •§ 9.2. Розподіл електричної енергії
- •§ 10.1. Визначення та основні поняття електропривода. Класифікація електроприводів
- •§ 10.2. Режими роботи електродвигунів та їхній вибір
- •§ 10.3. Загальні відомості про керування електроприводами
- •§ 10.4. Розімкнуті системи керування електроприводами з двигунами змінного та постійного струму
- •Гальмування в функції часу.
- •§ 10.5. Електроприводи з кроковими двигунами
- •§ 10.6. Замкнуті системи керування електроприводами
- •§ 10.7. Електроприводи промислових роботів і маніпуляторів
- •§ 10.8. Електрообладнання електричного транспорту
- •§ 10.9. Електроінструменти
- •§ 11.1. Електричне зварювання
- •§ 11.2. Електричне освітлення
- •§ 11.3. Установки і прилади електронагрівання
- •§ 11. 4. Використання електричної енергії в електрохімічному виробництві
- •§ 12.1. Дія електричного струму на організм людини
- •§ 12.2. Аналіз небезпеки електричних мереж
- •§12.3. Технічні способи і засоби захисту від враження електричним струмом
- •7. Електричні машини ................... 74
- •§ 7.3. Електричні машини змінного струму ....... 87
- •12. Основні відомості про електробезпеку.......... 174
7.3.2. Будова і принцип дії асинхронного двигуна
Основними частинами асинхронного двигуна (рис. 7.13) є нерухомий статор і обертовий ротор, які розділені повітряним зазором. Статор складається із станини (або корпуса) з лапами; стального осердя із штампованих, ізольованих один від одною, листів електротехнічної сталі з пазами для укладання обмотки статора; обмотки статора, виготовленої з ізольованого мідного дроту, й укладеного в пази осердя. Обмотка призначена для утворення обертового магнітного поля.
Найпростішим елементом обмотки є виток (рис. 7.14, а). Декілька з'єднаних між собою витків, які містяться у двох пазах і мають спільну ізоляцію паза, утворюють секцію
Рис. 7.14. Елементи обмоток статора:
а — виток; б — секція.
(рис. 7.14, б). Сукупність секцій, які належать до однієї фази, називається фазною обмоткою. Виводи фаз обмотки прийнято позначати: СІ, С2, СІ — початки і С4, С5, С6 — кінці відповідно першої, другої і третьої фаз. Окремі фази обмотки статора можуть з'єднуватися зіркою або трикутником. На рис. 7.15 наведено схеми з'єднання фаз обмотки статора і відповідні цим з'єднанням перемикання на щитку машини.
Рис. 7.15. Схеми з'єднання фаз обмотки статора:
а — зіркою; б — трикутником.
Ротор асинхронного двигуна (рис. 7.16) складається з таких частин: стального циліндра, складеного із штампованих, ізольованих один від одного, листів електротехнічної сталі; вала ротора, на якому закріплено стальний циліндр ротора, підшипників, вентилятора. Залежно від типу обмотки ротори поділяються на короткозамкнені та фазні. У пази короткозамкнених роторів укладено стержні із струмопровідного матеріалу, які з торців замикаються кільцями, утворюючи так зване біляче колесо. У пази фазного ротора укладено провідники секцій трифазної обмотки, які з'єднують зіркою.
Трифазний струм, що проходить через обмотку статора асинхронного двигуна, створює обертове магнітне поле, яке перетинає провідники обмотки ротора, індукує в них е. р. с. У провідниках замкненої обмотки протікають струми і2. При взаємодії цих струмів та обертового магнітного поля виникають електромагнітні сили, які за правилом лівої руки спрямовані в бік обертання поля статора. Ротор починає рухатися в бік руху магнітного поля. Швидкість обертання ротора w менша за швидкість обертання магнітного поля w0. Це можна пояснити так: якщо б ротор обертався із швидкістю поля, то через відсутність відносного
руху провідників обмотки ротора та обертового магнітного поля останнє не перетинало б провідників обмотки ротора, у них не індукувалися б е. р. с. і не було б струмів, а це означає, що електромагнітний момент
Рис. 7.16. Ротор асинхронного двигуна:
а — обмотка короткозамкненого ротора; б — схематичне зображення обмоток фазного ротора.
дорівнював би нулю. Отже, обертове магнітне поле і ротор асинхронного двигуна принципово обертаються з різними швидкостями — асинхронно, що і визначило назву машини.
Величина відставання ротора від обертового магнітного поля статора характеризується ковзанням S, яке є відношенням різниці (w0 - w), що називається швидкістю ковзання wS, до швидкості обертового магнітного поля статора w0
Швидкість обертання ротора w, виходячи з (7.26),
Величину ковзання можна виразити і через частоту обертання магнітного поля статора п0 і ротора п
де пS — п0 — п — частота ковзання.
У сучасних асинхронних двигунах залежно від типу за номінальним навантаженням ковзання становить Sном = 0,015/0,07.