
- •Глава 8 методы генной инженерии. Промышленный синтез белков, инсулина, соматотропина и интерферона
- •8.1. История создания генетической инженерии
- •8.2. Схема строения молекулы днк и триплетность генетического кода
- •Модель днк
- •8.3. Ферменты в генной инженерии
- •8. 4. Технология получения рекомбинантной молекулы днк
- •Рекомбинантной молекулы днк
- •8. 5. Векторы, используемые для клонирования днк
- •8. 6. Экспрессия генов в бактериальных клетках и микроорганизмах
- •До копирования всего структурного гена
- •С большой рибосомной субъединицей
- •В качестве объекта для клонирования и экспрессии
- •8.7. Метод электрофорезного разделения днк и этапы идентификации днк по Саузерну
- •Для электрофореза днк в агаровом геле
- •Идентификации днк методом Саузерн-блот гибридизации
- •8. 8. Секвенирование днк и получение генов
- •Семейства меченных фрагментов днк
- •Полученной методом секвенирования днк
- •Днк ферментативным методом
- •8. 9. Амплификация (увеличение числа копий) фрагментов днк с помощью метода полимеразной цепной реакции (пцр)
- •Фрагмента днк
- •8.10. Генетическая инженерия и ее возможности для практики
- •8. 11. Промышленный синтез белков
- •«Расплодки»
- •8. 12. Биотехнология получения инсулина, гормона роста и интерферона
- •При синтезе интерферона человека в e. Coli.
- •Глава 9
- •9. 2. Трансгенные животные (метод получения)
- •9. 2. 1. Методы введения чужеродного гена в организм животного
- •9.2.2. Создание разных видов трансгенных животных
- •9. 2. 3. Клонирование
- •В яйцеклетку (по Беквисту)
- •Методом пересадки ядер
- •9. 2. 4. Межвидовые пересадки эмбрионов и получение химерных животных
- •9. 2. 5. Получение гомозиготных диплоидных потомков
- •Диплоидных потомков
- •9. 2. 6. Создание партеногенетических животных
- •9. 2. 7. О генетическом риске и биобезопасности в биоинженерии и трансгенных технологиях
- •9. 3. Государственное регулирование безопасности генно-инженерной деятельности в Республике Беларусь
- •Глава 10 иммобилизованные ферменты
- •10. 1. Понятие «инженерная энзимология»
- •И иммобилизация ферментов
- •И Saccharomyces carlsberqensis, используемые для получения фермента инвертазы
- •10.2. Механизм биотехнологического действия ферментов
- •10. 3. Технология глубинного культивирования микроорганизмов – продуцентов ферментов.
- •10. 4. Технология выделения и очистки ферментных препаратов
- •10. 5. Иммобилизованные ферменты. Методы иммобилизации
- •10. 6. Практическое применение иммобилизованных ферментов
- •При растворении тромбов в кровеносных сосудах
- •«Искусственная почка»
- •Глава 11
- •Гидроксилирование кортизола
- •11. 2. Методы контроля репродуктивной функции у животных
- •11. 3. Нейро-гуморальная регуляция внутрияичниковых процессов. Рост и развитие эмбрионов
- •Внутрияичниковых процессов
- •11. 4. Биотехнология получения потомков животных желаемого пола
- •Быков производителей по полу
- •Глава 12 получение аминокислот и белка одноклеточных организмов
- •12.1. Содержание незаменимых аминокислот в белках некоторых микроорганизмов
- •12. 2. Выращивание кормовых дрожжей
- •12.3. Белковые концентраты из бактерий
- •На газообразных углеводородах
- •12.4. Кормовые белки из водорослей
- •12. 5. Белки микроскопических грибов
- •12. 6. Кормовые белковые концентраты из растений
- •12. 7. Производство незаменимых аминокислот
- •Из аспарагиновой кислоты
- •12. 8. Производство кормовых витаминных препаратов
- •12. 9. Кормовые липиды
- •12. 10. Производство ферментных препаратов
- •Глава 13
- •13. 2. Результаты использования пребиотиков
- •13. 3. Эффективность использования гербиотиков и симбиотиков
- •13. 4. Результаты применение заквасок для силосования
- •Заключение
- •Литература Основная
- •Дополнительная
- •Содержание
12. 9. Кормовые липиды
Кроме белков, углеводов и витаминов неотъемлемым компонентом кормов сельскохозяйственных животных являются липиды, содержащие полиненасыщенныё жирные кислоты – линолевую, линоленовую, арахидоновую, которые не могут синтезироваться в организме животных и, следовательно, должны поступать с пищей. Полиненасыщенныё жирные кислоты, называемые незаменимыми, участвуют в построении клеточных мембран, входя в состав структурных липидов. При недостатке незаменимых жирных кислот снижается интенсивность роста сельскохозяйственных животных, угнетается их репродуктивная функция, понижается сопротивляемость организма к инфекции.
Основной источник незаменимых жирных кислот для сельскохозяйственных животных – различные растительные продукты, входящие в состав кормов. Однако в растительных кормах содержится мало липидов или они имеют неблагоприятный состав жирных кислот, что ухудшает питательную ценность кормов. В целях балансирования кормовых рационов сельскохозяйственных животных по содержанию незаменимых жирных кислот осуществляется поиск новых источников биологически полноценных липидов, которые можно было бы использовать в качестве высококонцентрированных кормовых добавок.
Наиболее перспективными промышленными продуцентами липидов, близкими по составу к растительным жирам и пригодными для использования в кормовых целях, являются дрожжи и микроскопические грибы, которые накапливают внутриклеточные липиды. Однако известны виды, способные выделять липиды в культуральную жидкость. В клетках этих микроорганизмов обычно содержится от 25 до 70% липидов в расчёте на сухую массу, которые на 40-90% представлены триацилглицеринами и на 5-50% - фосфолипидами. В них также содержится много стероидных веществ (до 1-1,5% на сухую массу), представленных главным образом эргостерином, из которого в организме животных образуется витамин D2.
Много липидов (50-60% от сухой массы) способны накапливать некоторые штаммы дрожжей Phodotorula, Lipomyces. Клетки дрожжей рода Candida синтезируют меньше липидов (20-40%), однако отличаются высокой скоростью роста и способностью хорошо утилизировать разнообразные источники сырья. Микроскопические грибы могут синтезировать до 40-50% высокоценных липидов, сходных по составу жирных кислот с растительными маслами (табл. 12. 4).
Из-за образования в клетках микроорганизмов активных комплексов гидролитических ферментов они способны утилизировать в качестве источников углерода различные субстраты – гидролизаты растительных отходов, послеспиртовую барду, молочную сыворотку, мелассу, отходы зерноперерабатывающей промышленности, углеводороды нефти, низкомолекулярные спирты (метанол, этанол).
Таблица 12.4. Состав жирных кислот растительных масел и липидов некоторых микроорганизмов (в % от суммы)
Источник жирных кислот |
Кислота |
||||||
миристн-новая |
пальмитн-новая |
пальмито-олеиновая |
стеарино- вая |
олеино- вая |
линоле- вая |
линоле-новая |
|
Оливковое масло |
- |
10 |
- |
1,0 |
82 |
7,0 |
- |
Соевое масло |
0,5 |
11 |
- |
4,5 |
22 |
53 |
8,0 |
Подсолнечное масло |
0,5 |
6,5 |
- |
3,5 |
23 |
65 |
0,5 |
Льняное масло |
- |
7,0 |
- |
14 |
18 |
14 |
47 |
Candida Sake |
- |
2-11 |
0,3-4 |
1-4 |
21-92 |
4-23 |
1-17 |
Candida Scotti |
- |
0,1-10 |
0,1-1 |
1-4 |
31-49 |
20-39 |
0,1-5 |
Candida lipolitica |
- |
11-16 |
6-15 |
1-6 |
24-35 |
31-51 |
0,1-9 |
Phodotorula glutinus |
- |
10-22 |
1-4 |
3-90 |
25-48 |
21-49 |
3-17 |
Lipomyces lipoterus |
- |
13-23 |
1-2 |
2-3 |
25-35 |
39-51 |
2-3 |
Blakeslea trispora |
0,1-1 |
16-25 |
0,1-1 |
4-13 |
36-43 |
11-19 |
11-12 |
Rhizoris cohnii |
0,1-1 |
15-33 |
0,1-3 |
5-13 |
34-46 |
15-22 |
3-19 |
Trichoderma hanzianum |
0,2-7 |
8-30 |
0,1-1 |
3-7 |
18-37 |
29-52 |
0,1-0,4 |
В качестве источника азота в питательную среду добавляют дрожжевой или кукурузный экстракт, соли аммония, мочевину, но при этом строго контролируют соотношение углерода и азота, так как при избытке азота снижается образование липидов клетках микроорганизмов (оптимальное соотношение С:N = 320:400).
Кроме источников углерода и азота в питательную среду также добавляют P, K, Mg, Zn, Fe, Mn, витамины группы В, токоферол.
Этапы технологии производства липидов на питательной среде включает:
1.Начальный период интенсивного роста микроорганизмов и сравнительно небольшое накопление липидов;
2.Усиление синтеза липидов в начале стационарной фазы развития микроорганизмов;
3.При выращивании продуцентов кормовых липидов поддерживается температура 20-30°С, так как при более высокой температуре снижается выход липидов, а в липидах уменьшается доля полиненасыщенных жирных кислот;
4.В процессе ферментации требуется поддерживать режим интенсивной аэрации, так как для окисления углеродных субстратов необходим кислород. Он также необходим для синтеза ненасыщенных жирных кислот, поэтому улучшение аэрации стимулирует увеличение выхода незаменимых жирных кислот;
5.По окончании ферментации микробная масса отделяется от остатков субстрата и высушивается по такой же технологии, как кормовые дрожжи. Для улучшения физических свойств к высушенному продукту добавляют отруби или кукурузную муку.
Наряду с получением кормовых липидов на основе ферментации микроорганизмов разрабатываются также технологии производства комплексных микробных препаратов, содержащих белки, липиды, каротиноиды и другие ценные питательные вещества, которые позволяют балансировать корма одновременно по нескольким компонентам. Так, например, получен высокий эффект при введении в кормовой рацион птиц белково-липидной биомассы дрожжей Lipomyces lipoterus, содержащей 18-20% белков и 27-29% липидов, а также биомассы гриба Blakeslea trispora с содержанием белков 30% и липидов 28%.
Липиды микроорганизмов могут быть использованы не только в кормопроизводстве, но и как заменитель растительных пищевых жиров, используемых на технические нужды (лакокрасочная, химическая промышленность), так как примерно 20% от производимых в мире растительных жиров расходуется на технические, непищевые цели.