
- •Глава 8 методы генной инженерии. Промышленный синтез белков, инсулина, соматотропина и интерферона
- •8.1. История создания генетической инженерии
- •8.2. Схема строения молекулы днк и триплетность генетического кода
- •Модель днк
- •8.3. Ферменты в генной инженерии
- •8. 4. Технология получения рекомбинантной молекулы днк
- •Рекомбинантной молекулы днк
- •8. 5. Векторы, используемые для клонирования днк
- •8. 6. Экспрессия генов в бактериальных клетках и микроорганизмах
- •До копирования всего структурного гена
- •С большой рибосомной субъединицей
- •В качестве объекта для клонирования и экспрессии
- •8.7. Метод электрофорезного разделения днк и этапы идентификации днк по Саузерну
- •Для электрофореза днк в агаровом геле
- •Идентификации днк методом Саузерн-блот гибридизации
- •8. 8. Секвенирование днк и получение генов
- •Семейства меченных фрагментов днк
- •Полученной методом секвенирования днк
- •Днк ферментативным методом
- •8. 9. Амплификация (увеличение числа копий) фрагментов днк с помощью метода полимеразной цепной реакции (пцр)
- •Фрагмента днк
- •8.10. Генетическая инженерия и ее возможности для практики
- •8. 11. Промышленный синтез белков
- •«Расплодки»
- •8. 12. Биотехнология получения инсулина, гормона роста и интерферона
- •При синтезе интерферона человека в e. Coli.
- •Глава 9
- •9. 2. Трансгенные животные (метод получения)
- •9. 2. 1. Методы введения чужеродного гена в организм животного
- •9.2.2. Создание разных видов трансгенных животных
- •9. 2. 3. Клонирование
- •В яйцеклетку (по Беквисту)
- •Методом пересадки ядер
- •9. 2. 4. Межвидовые пересадки эмбрионов и получение химерных животных
- •9. 2. 5. Получение гомозиготных диплоидных потомков
- •Диплоидных потомков
- •9. 2. 6. Создание партеногенетических животных
- •9. 2. 7. О генетическом риске и биобезопасности в биоинженерии и трансгенных технологиях
- •9. 3. Государственное регулирование безопасности генно-инженерной деятельности в Республике Беларусь
- •Глава 10 иммобилизованные ферменты
- •10. 1. Понятие «инженерная энзимология»
- •И иммобилизация ферментов
- •И Saccharomyces carlsberqensis, используемые для получения фермента инвертазы
- •10.2. Механизм биотехнологического действия ферментов
- •10. 3. Технология глубинного культивирования микроорганизмов – продуцентов ферментов.
- •10. 4. Технология выделения и очистки ферментных препаратов
- •10. 5. Иммобилизованные ферменты. Методы иммобилизации
- •10. 6. Практическое применение иммобилизованных ферментов
- •При растворении тромбов в кровеносных сосудах
- •«Искусственная почка»
- •Глава 11
- •Гидроксилирование кортизола
- •11. 2. Методы контроля репродуктивной функции у животных
- •11. 3. Нейро-гуморальная регуляция внутрияичниковых процессов. Рост и развитие эмбрионов
- •Внутрияичниковых процессов
- •11. 4. Биотехнология получения потомков животных желаемого пола
- •Быков производителей по полу
- •Глава 12 получение аминокислот и белка одноклеточных организмов
- •12.1. Содержание незаменимых аминокислот в белках некоторых микроорганизмов
- •12. 2. Выращивание кормовых дрожжей
- •12.3. Белковые концентраты из бактерий
- •На газообразных углеводородах
- •12.4. Кормовые белки из водорослей
- •12. 5. Белки микроскопических грибов
- •12. 6. Кормовые белковые концентраты из растений
- •12. 7. Производство незаменимых аминокислот
- •Из аспарагиновой кислоты
- •12. 8. Производство кормовых витаминных препаратов
- •12. 9. Кормовые липиды
- •12. 10. Производство ферментных препаратов
- •Глава 13
- •13. 2. Результаты использования пребиотиков
- •13. 3. Эффективность использования гербиотиков и симбиотиков
- •13. 4. Результаты применение заквасок для силосования
- •Заключение
- •Литература Основная
- •Дополнительная
- •Содержание
Глава 10 иммобилизованные ферменты
10. 1. Понятие «инженерная энзимология»
И иммобилизация ферментов
Все встречающиеся в природе организмы содержат ферменты (биокатализаторы), функцией которых является проведение и регуляция химических реакций, необходимых для жизни. Энзимология – раздел молекулярной биологии и биохимии, изучающий свойства, строение и механизмы действия ферментов. Основная задача инженерной энзимологии состоит в создании новых перспективных технологий на основе использования ферментов. Ферменты применяются в следующих областях:
1. В пищевой промышленности – для производства хлеба, переработки молочных продуктов, осветления соков и др.
2. В медицине – для производства лекарственных препаратов.
3. В животноводстве – для повышения усвояемости кормов, а также для ускорения процесса силосования и улучшения питательных свойств силоса.
4. В растениеводстве – для защиты растений от насекомых - вредителей.
Источники получения ферментов.
Ферменты выделяют из клеток всех видов живых организмов, но традиционным источником служат растения.
Синтез ферментов клетками культуры ткани ввиду сложности и дороговизны не получил широкого распространения, хотя он и позволяет получить большое количество необходимого вещества в десятки, а иногда в сотни раз быстрее, чем путем выделения из живых организмов. В настоящее время ферменты получают преимущественно из бактерий, так как они примерно в сто раз дешевле ферментов, выделенных из клеток растений и животных.
Высокопродуктивные штаммы микроорганизмов получают благодаря использованию мутационного процесса и методов генетической инженерии. Сочетание этих методов позволило японским исследователям добиться 200 – кратного увеличения синтеза альфа – амилазы клетками сенной палочки Bacillus subtilis.
Причины иммобилизации ферментов.
Выделяемые из клеток свободные ферменты имеют ряд недостатков:
1. Они растворимы в воде и во время выделения или при хранении могут потерять свою активность.
2. Их порой трудно отделить от продуктов реакции.
В последнее время были найдены пути преодоления этих сложностей – получены водонерастворимые формы, так называемые иммобилизованные (связанные) ферменты.
Способ иммобилизации и его преимущество.
Иммобилизация – это метод, позволяющий связать молекулу фермента с природным или синтетическим носителем. Носитель не смешивается с растворами реагентов, но позволяет ферменту взаимодействовать с ними, в результате чего и образуются необходимые вещества. Наиболее распространенным способом получения иммобилизованных ферментов является ковалентное связывание (рис.10.1). Иммобилизованные ферменты обладают существенными преимуществами по сравнению с традиционными ферментативными препаратами: 1. Они стабильны и долго сохраняют свою активность; 2. Легко отделяются от реакционной среды, что повышает качество получаемой продукции. 3. Иммобилизованные ферменты технологичны, что определяется возможностью вести биотехнологический процесс непрерывно, регулировать скорость реакции и выход продукции.
Рис. 10. 1. Мембрана с иммобилизованными клетками дрожжей
Сущность иммобилизации ферментов - прикрепление их к активной форме к нерастворимой основе, заключение в гель или в полунепроницаемую мембранную систему. Фиксированные таким образом ферменты обладают пролонгированным (более длительным) действием.
Ещё в 1916 году Дж. Нельсон и Е. Гриффин показали, что сахароза, сорбированная на угле, сохраняла свою каталитическую активность, но лишь в 1953 году Н. Грубхофер и Д. Шлейт впервые осуществили ковалентные связывания амилазы, пепсина и карбоксипептидазы с этим нерастворимым носителем.
В 1981 году на первой конференции по инженерной энзимологии был узаконен термин «иммобилизованные ферменты». Однако в понятие «иммобилизация» в настоящее время вкладывают более широкий смысл, чем связывание на нерастворимом носителе, а именно – полное или частичное ограничение свободы движения белковых молекул.
Фермент инвертаза.
Фермент инвертаза расщепляет сахарозу на глюкозу и фруктозу, его получают из пивных дрожжей (Saccharomyces cerevisiae и Saccharomyces carlsberqensis) (рис 10.2).
Инвертный сахар кристаллизуется медленнее, чем сахароза, поэтому его применяют при изготовлении продуктов, в которых кристаллизация нежелательна – в полужидких начинках конфет, в ликерах, сиропах, в искусственном меде.
Рис.10.2. Клетки пивных дрожжей Saccharomyces cerevisiae