Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Подземная нефтегазовая гидромеханика Лекции.doc
Скачиваний:
5
Добавлен:
01.04.2025
Размер:
4.28 Mб
Скачать

7.4.4. Характеристическая функция течения при совместном действии источника и стока

Рис. 7.23. Схема расположения источника 01 и стока 02

В разделе 7.1.6. подробно исследовалось семейство изобар в случае потока от нагнетательной скважины к эксплуатационной. О линиях тока было замечено, что они образуют семейство окружностей, ортогональных изобарам. Уточним вопрос об особенностях семейства линий тока на основе метода теории функций комплексного переменного.

Сохраняя прежние обозначения и придерживаясь рис. 7.23, получим на основании формул (7.60) и (7.61) характеристическую функцию течения от нагнетательной скважины к эксплуатационной

. (7.62)

где r1 и r2– расстояния некоторой точки М до источника 01 и стока 02 , соответственно, θ1 и θ2 – соответствующие полярные углы; М – модуль массового дебита стока и источника.

Отделяя в (7.62) действительную часть от мнимой, получим

, (7.63)

Отсюда:

, (7.64)

Из (7.64) следует, что уравнение семейства изобар запишется в виде

,

где С постоянное.

Уравнение линий тока получается из второй формулы (7.64):

θ1-θ2*, (7.65)

где С* – постоянное.

Рассмотрим уравнение (7.65). Выразим θ1 и θ2 через координаты точки М (х, у) в соответствии с рис. 7.23.

.

Подставив значения θ1 и θ2 в уравнение (7.65) и учитывая, что а2-a1=2a, будем иметь после несложных алгебраических преобразований:

(7.66)

где С** - новая постоянная.

Из (7.66) видно, что центры окружностей имеют координаты . Так как абсцисса центров окружностей не зависит от С**, то она одинакова для всех окружностей и, следовательно, все окружности расположены на прямой , То есть на прямой, параллельной оси , делящей расстояние между стоком и источником пополам. Радиус окружностей .

Рис. 7.24. Фильтрационное поле источника и стока

Отсюда абсциссы точек пересечения

то есть линии тока проходят через сток и источник.

Таким образом, линии тока представляют собой окружности, проходящие через центры обеих скважин, и ортогональны окружностям - изобарам. Центры всех этих окружностей расположены на прямой (эквипотенциальной линии), делящей расстояние между скважинами пополам (рис. 7.24).

7.4.5. Характеристическая функция течения для кольцевой батареи скважин

Характеристическую функцию для п стоков представим в виде:

. (7.67)

Согласно формуле (7.61), можно записать

. (7.68)

Здесь аjкомплексное число, определяющее положение стока за номером j.

В соответствии с формулой (7.47) комплексное число аj можно представить в тригонометрической форме, заменив в (7.47) z на аj, r на а (радиус батареи). Тогда формулу (7.68) можно переписать для кольцевой батареи из n скважин в следующем виде:

(7.69)

где .

Целая рациональная функция вида хп - 1 может быть представлена в виде

. (7.70)

Выражение, сходное с правой частью формулы (7.70) имеется под знаком логарифма в (7.69). Таким образом, можно представить характеристическую функцию F (z) (7.69) в виде:

. (7.71)

Согласно формулам (7.42) и (7.71) находим модуль массовой скорости фильтрации :

, (7.72)

где z = rei; r1, r2, ..., rnрасстояния точки пласта от стоков O1, О2 , ...Оnсоответственно.

В центре кольцевой батареи r = 0. Из (7.72) следует, что скорость фильтрации u здесь равна нулю. Эти точки фильтрационного поля называются точками равновесия. При разработке залежей нефти в окрестностях таких точек образуются «застойные области» – «целики нефти».

Зная положения точек равновесия в пласте, можно находить рациональные приемы для своевременной ликвидации целиков нефти. Одним из таких приемов является изменение режима работы скважин, заставляющее нефть целика прийти в движение в нужном направлении.