
- •Введение
- •Глава 1. Физические основы подземной гидромеханики
- •1.1. Понятие о моделировании
- •1.2. Модели фильтрационного течения, флюидов и коллекторов
- •1.2.1. Модели фильтрационного течения
- •1.2.2. Модели флюидов
- •1.2.3. Модели коллекторов
- •1.2.4. Характеристики коллекторов
- •Вопросы для самопроверки
- •Глава 2. Дифференциальные уравнения фильтрации
- •2.1. Скорость фильтрации
- •2.2. Общая система уравнений подземной гидромеханики
- •2.3. Закон Дарси (линейный закон фильтрации)
- •2.3.1. Пористая среда
- •2.3.2. Трещинная среда
- •2.4. Уравнения потенциального движения для пористой среды
- •2.5. Уравнения фильтрации для трещинно-пористой среды
- •2.6. Начальные и граничные условия
- •2.6.1. Начальные условия
- •2.6.2. Граничные условия
- •2.7. Замыкающие соотношения
- •2.7.1. Зависимость плотности от давления
- •2.7.2. Зависимость вязкости от давления
- •2.7.3. Зависимость пористости от давления
- •2.7.4. Зависимость проницаемости от давления
- •Вопросы для самопроверки
- •Глава 3. Установившаяся потенциальная одномерная фильтрация
- •3.1. Виды одномерных потоков
- •3.1.1. Прямолинейно-параллельный поток
- •Примеры
- •3.1.2. Плоскорадиальный поток
- •Примеры
- •Радиально-сферический поток
- •3.2. Исследование одномерных течений
- •3.2.1. Задача исследования
- •3.2.2. Общее дифференциальное уравнение
- •3.2.3. Потенциальные функции
- •3.2.4. Анализ основных видов одномерного течения
- •3.2.5. Анализ одномерных потоков при нелинейных законах фильтрации
- •3.3. Фильтрация в неоднородных средах
- •4. Приток к несовершенным скважинам
- •3.4.1. Виды и параметры несовершенств скважин
- •3.4.2. Исследования притока жидкости к несовершенной скважине
- •3.5. Влияние радиуса скважины на её производительность
- •Вопросы для самопроверки
- •Глава 4. Нестационарная фильтрация упругой жидкости и газа
- •4.1. Упругая жидкость
- •4.1.1. Понятия об упругом режиме пласта
- •4.1.2. Основные параметры теории упругого режима
- •4.1.3. Уравнение пьезопроводности
- •4.1.4. Приток к скважине в пласте неограниченных размеров
- •4.1.5. Приток к скважине в пласте конечных размеров в условиях упруговодонапорного и замкнутоупругого режимов Круглый горизонтальный пласт с открытой внешней границей
- •4.1.6. Периодически работающая скважина
- •4.1.7. Определение коллекторских свойств пласта по данным исследования скважин нестационарными методами
- •4.2. Неустановившаяся фильтрация газа в пористой среде
- •4.2.1. Уравнение Лейбензона
- •Вопросы для самопроверки
- •Глава 5. Основы теории фильтрации многофазных систем
- •5.1. Связь с проблемой нефтегазоотдачи пластов
- •5.2. Основные характеристики многофазной фильтрации
- •5.3. Исходные уравнения многофазной фильтрации
- •5.4. Потенциальное движение газированной жидкости
- •Некоторые выводы
- •5.5. Фильтрация водонефтяной смеси и многофазной жидкости
- •5.6. Одномерные модели вытеснения несмешивающихся жидкостей
- •5.6.1. Задача Баклея Леверетта и ее обобщения
- •5.6.2. Задача Рапопорта – Лиса
- •Вопросы для самопроверки
- •Глава 6. Основы фильтрации неньютоновских жидкостей
- •6.1. Реологические модели фильтрующихся жидкостей и нелинейные законы фильтрации
- •6.2. Одномерные задачи фильтрации вязкопластичной жидкости
- •6.3. Образование застойных зон при вытеснении нефти водой
- •Вопросы для самопроверки
- •Глава 7. Установившаяся потенциальная плоская (двухмерная) фильтрация
- •7.1. Метод суперпозиции (потенциалов)
- •7.1.1. Фильтрационный поток от нагнетательной скважины к эксплуатационной
- •7.1.2. Приток к группе скважин с удаленным контуром питания
- •7.1.3. Приток к скважине в пласте с прямолинейным контуром питания
- •7.1.4. Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы
- •7.1.5. Приток к скважине в пласте с произвольным контуром питания
- •7.1.6. Приток к бесконечным цепочкам и кольцевым батареям скважин
- •7.2. Метод эквивалентных фильтрационных сопротивлений (метод Борисова)
- •7.3. Интерференция несовершенных скважин.
- •7.3.1. Взаимодействие скважин в анизотропном пласте
- •7.3.2. Взаимодействие скважин при нестационарных процессах
- •7.4. Решение плоских задач фильтрации методами теории функций комплексного переменного
- •7.4.1.Общие положения теории функций комплексного переменного
- •7.4.2. Характеристическая функция, потенциал и функция тока
- •7.4.3. Характеристические функции некоторых основных типов плоского потока
- •7.4.4. Характеристическая функция течения при совместном действии источника и стока
- •7.4.5. Характеристическая функция течения для кольцевой батареи скважин
- •7.4.6. Подсчет времени движения частицы несжимаемой жидкости вдоль линии тока
- •7.4.7. Стягивание контура нефтеносности к эксплуатационной кольцевой батарее
- •7.5.2. Вывод некоторых формул для притока к скважинам при помощи конформного отображения
- •Вопросы для самопроверки
- •Глава 8. Основы численного моделирования
- •8.1. Сущность математического моделирования
- •8.2. Основные проблемы гидродинамического моделирования
- •Вопросы для самопроверки
- •Основные определения
- •Глава 1
- •Глава 2,3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
4.1.5. Приток к скважине в пласте конечных размеров в условиях упруговодонапорного и замкнутоупругого режимов Круглый горизонтальный пласт с открытой внешней границей
Постоянный дебит. Пусть пласт имеет внешнюю границу радиусом rк, через которую может поступать вода при истощении упругого запаса. В центре пласта имеется скважина радиусом rс, которая мгновенно запускается в эксплуатацию с постоянным дебитом Q0. Перед пуском скважины давление в пласте было рк.
Для определения давления используем полученную ранее зависимость для неограниченного пласта
,
(4.19)
и формулу Дюпюи
(4.25)
для установившегося плоскорадиального потока. В результате совместного решения данных зависимостей получим следующую приближённую формулу
,
(4.26)
где ру – установившееся давление в любой точке пласта или в реагирующей бездействующей скважине (давление ру соответствует времени t = или Fo = ).
Изменение пьезометрической кривой в различные моменты времени после пуска скважины с постоянным дебитом в пласте с круговым контуром питания показано на рис.4.3а.
a b
Рис. 4.3. Пьезометрические кривые при пуске скважины в конечном пласте с открытой внешней границей:
а – с постоянным дебитом; b – с постоянным забойным давлением рс
Рис. 4.4. Изменение дебита скважины с течением времени при постоянном забойном давлении рс
Постоянное забойное давление. На рис 4.3b изображена в различные моменты времени пьезометрическая кривая после пуска возмущающей скважины с постоянным забойным давлением, на рис.4.4 – изменение дебита скважины с течением времени.
Круглый горизонтальный пласт с закрытой внешней границей
Постоянный дебит. Будем считать дебит скважины постоянным. Пьезометрические кривые падения давления для разных моментов времени показаны на рис. 4.5. С некоторого момента смещение во времени пьезометрической кривой для закрытого пласта происходит так, что все точки её опускаются на одно и тоже расстояние , т.е. во всех точках пласта давление падает с одной скоростью.
Рис. 4.5. Пьезометрические кривые при пуске скважины в конечном пласте с закрытой внешней границей при постоянном дебите
Из рассмотрения рис. 4.3, 4.5. видно, что в условиях упругого режима процесс перераспределения давления, а значит, и процесс взаимодействия скважин развивается постепенно, если же и наблюдается аномально быстрое взаимодействие скважин, то это можно объяснить неоднородностью пластов и их анизотропией.
Кроме того, при пуске или остановке скважины давление вначале меняется быстро, а затем темп изменения давления замедляется.
Если скважина действовала с постоянным дебитом при установившимся потоке и в некоторый момент времени она останавливается, то начинается процесс восстановления давления. Уровень жидкости в скважине начинает подниматься.
Для расчета используются полученные выше формулы для возмущающей скважины, но вместо данных понижения давления в пласте надо подставить данные повышения давления после остановки скважины.
Постоянное забойное давление. Объемный дебит возмущающей скважины определяется по формуле
(4.27)
а объем жидкости Vf,
добытой из скважины (в пластовых условиях)
за время t
с момента пуска скважины равен
.
При больших параметрах Фурье fo объем Vf оказывается равным упругому запасу жидкости в закрытом пласте
Vf *(рк - рс). (4.28)
На рис. 4.6 показана пьезометрическая кривая для нескольких моментов времени в закрытом пласте, а на рис. 4.7 изображены две кривые: одна из них характеризует падение дебита скважины с постоянным забойным давлением (кр. 1); другая – рост суммарной добычи жидкости Vf (кр.2).
Рис. 4.6. Пьезометрические кривые при пуске скважины в конечном пласте с закрытой внешней границей при постоянном забойном давлении |
Рис. 4.7. Изменение дебита Q (кр.1) скважины и суммарной добычи Qcp (кр.2) с течением времени t |