Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛП 02_ С_М.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
866.82 Кб
Скачать

Транспортная модель.

Транспортная модель используется для составления наиболее экономичного плана перевозок одного вида продукции из нескольких пунктов изготовления (например, заводов) в пункты доставки (например склады).

Транспортная модель может применяться при рассмотрении практических ситуаций, связанных с управлением запасами, составлением именных графиков, назначением служащих не рабочие места, оборотом наличного капитала.

Транспортная задача может быть сведена к задаче линейного программирования и решена симплекс-методом. вместе с тем специфика транспортной задачи позволяет решить ее более эффективным методом. Однако, и этот метод по существу воспроизводит шаги симплекс-метода.

Определение транспортной модели

При построении транспортной модели используются:

  1. величины, характеризующие объем производства в каждом исходном пункте ;

  2. величины, характеризующие объем спроса в каждом пункте потребления ;

  3. стоимость перевозки единицы продукции из каждого пункта производства в пункт потребления .

Заметим, что потребности одного пункта назначения могут удовлетворяться из нескольких исходных пунктов, так же один пункт производства может поставлять товар в несколько пунктов потребления.

Цель построения модели заключается в определении количества продукции, которую следует перевозить из всех исходных пунктов в пункты потребления при минимальных общих транспортных расходах.

Основное предположения транспортной модели состоит в том, что величина расходов на каждом маршруте прямо пропорциональна объему перевозимой продукции.

Рассмотрим графическое представление транспортной модели

Рисунок 4

Транспортная модель такого вида называется сетевой и имеет m исходных пунктов и n пунктов назначения. Исходные пункты и пункты назначения называются вершинами сети или соответствующего графа. Маршрут по которому перевозится продукция называется дугой, количество продукции, производимая в i-ом исходно пункте обозначается . Количество потребляемой продукции в j-ом пункте - . Стоимость перевозки .

Соответствующую математическую модель можно записать в следующем виде:

I отражает тот факт, что суммарный объем перевозок из некоторого исходного пункта не может превышать произведенного в этом пункте количества продукции.

II показывает, что суммарные перевозки продукции в некоторый пункт потребления должны полностью удовлетворять потребность в спросе на эту продукцию.

Анализ транспортной модели показывает, что суммарный объем производства не должен быть меньше объема потребления.

В том случае, если что суммарный объем производства равен суммарному объему потребления, транспортная модель называется сбалансированной.

Такая модель является канонической моделью линейного программирования.

Пример транспортной модели

Заводы автомобильной фирмы расположены в Лос-Анджелесе, Детройте и Нью-Орлеане. Центры распределения в Денвере и Майами. Объем производства заводов 1000, 1500 и 1200 автомобилей соответственно. Ожидаемый спрос равен 2300 и 1400 автомобилей соответственно.

Стоимость перевозки одного автомобиля приведена в таблице 10:

Таблица 8

Денвер

Майами

Лос-Анджелес

80

215

Детройт

100

108

Нью-Орлеан

102

68

- количество автомобилей, которые перевозят из i-ого пункта в j-ый (i=1,2,3; j=1,2).

Суммарный объем производства автомобилей равен 3700 и равняется суммарному ожидаемому спросу. Следовательно, данная транспортная модель является сбалансированной и ее можно записать в следующем виде:

при ограничениях

Компактный способ записи транспортной модели связан с использованием транспортной таблицы или матрицы, у которой соответствуют исходным пунктам, а столбцы пунктам спроса.

Таблица 9

Денвер (2300)

Майами (1400)

Лос-Анджелес (1000)

80

215

Детройт (1500)

100

108

Нью-Орлеан (1200)

102

68