
- •Характеристика "Индустрии наносистем"
- •Основные постулаты Индустрии наносистем
- •Основные постулаты Индустрии наносистем
- •Список литературы
- •§1. Гигантские эффекты
- •Магнитосопротивление
- •Металлические спин-электронные структуры
- •Спин-вентили
- •Магнитный туннельный переход
- •§2. Мезоскопическая физика
- •1. Длина волны де Бройля
- •2. Средний свободный пробег электрона
- •3. Диффузионная длина
- •4. Длина экранирования
- •5. Длина локализации
- •§3. Квантовая механика
- •§4. Электронные микроскопы
- •§5. Сканирующие электронные микроскопы
- •§6. Развитие зондового сканирования поверхности
- •§7. Электронные наноприборы. Часть 1
- •§8. Электронные наноприборы. Часть 2
- •§9. Электронные наноприборы. Часть 3
§1. Гигантские эффекты
Конец ХХ и начало XXI веков без преувеличения можно назвать эпохой "гигантских эффектов". Начиная с 1965 г. было открыто полтора десятка физических феноменов, измеряемая величина в которых меняется от нескольких десятков до нескольких тысяч процентов. Это так поражало исследователей, что они по праву присваивали найденным эффектам титул гигантских. Особенно богатым на открытия был 2003 г., когда обнаружили четыре подобных явления (рисунок 1). Ряд этих многообещающих эффектов уже нашел применение в науке и технике, позволив сконструировать приборы и технические устройства с весьма высокими характеристиками.
Рисунок
1
Н
ачнем
с магнитострикционного эффекта,
обнаруженного в ферромагнитных материалах
(например, в железе, никеле и др.) еще в
1842 г. Суть эффекта магнитострикции
показана на рисунке 2 и заключена в
следующем: если поместить образец в
магнитное поле, его форма и размеры
изменятся. Это изменение было очень
незначительным и в среднем составляло
всего 0,003 %. Однако в 1961 г. у редкоземельных
металлов тербия Tb, диспрозия Dy и некоторых
их сплавов был открыт эффект гигантской
магнитострикции, величина которого
больше на два порядка: 0,5 % для сплава
TbDyZn. Это позволило создать высокочувствительные
магнитострикционные механизмы
микроперемещений и нажимных устройств,
принципиально новые генераторы мощного
звука и ультразвука, сверхчувствительные
приемники звука. Были улучшены
характеристики линий задержки звуковых
и электрических сигналов, а также других
устройств для радиотехники и электросвязи.
Рисунок 2
Широко известный пьезоэлектрический эффект был открыт в 1880 г. и с тех пор нашел применение как в промышленности, так и быту (его используют, например, в пьезозажигалках). Пьезоэлементы созданы из материалов, при деформации которых появляется электрический потенциал. На рисунке 3 показано возникновение потенциала при деформации кристалла кварца. Если же мы поместим их в электрическое поле, то пьезоэлементы деформируются - это инверсионный пьезоэлектрический эффект. Материалы, которые используют в качестве пьезоэлементов, можно разбить на две группы: пьезоэлектрические монокристаллы и пьезокерамика. Максимальная величина классического пьезоэлектрического эффекта получена для керамики и составляет около 0,17 %. Гигантский пьезоэлектрический эффект, равный 1,7 %, достигнут в пьезокерамике PMN-PT (свинец, магний, ниобат/свинцовый титанат). Такие пьезоэлементы нашли применение в промышленности в качестве датчиков различных физических величин (ускорения, давления, изменения размеров), пьезоприводов механизмов и т. д. Массив из микрозеркал, в основе которого лежат пьезоэлементы, позволяет создать управляющие устройства для волоконно-оптических сетей. В последние годы наблюдается стремительный прогресс в разработке нано- и микроэлектромеханических устройств, способных передвигаться, собирать, хранить и передавать информацию, осуществлять определенные воздействия по заложенной программе или команде. Разработку микроприводов, а также пьезоэлектрических генераторов невозможно представить без материалов с гигантским пьезоэффектом.
Рисунок
3
Еще один гигантский эффект, результат внедрения которого почувствовал каждый пользователь компьютера, - эффект гигантского магнитосопротивления. В конце 90-х годов средняя емкость жесткого диска составляла примерно 20 Гбайт, что соответствовало плотности записи информации около 4,1 Гбайт/кв. дюйм. Однако сегодня емкость жестких дисков возросла до 400 Гбайт, а плотность записи достигла 100 Гбайт/кв. дюйм. С чем связан такой стремительный рост?
Технологический прорыв обеспечил эффект гигантского магнитосопротивления (ГМС) открытый в 1988 г. В 1997 г. компанией IBM были созданы считывающие головки для жестких дисков, основанные на явлении ГМС. Они обладали высокой чувствительностью к магнитному полю при малом геометрическом размере, что позволило сократить размер бита и, следовательно, значительно увеличить емкость носителей.