
- •Содержание
- •Technological processes control automated systems
- •Vocabulary:
- •1. Answer the questions:
- •2. True or false:
- •3. Choose the right preposition:
- •Automation
- •1. Define the main idea of the text:
- •2. Questions to the text:
- •3. Put the following sentences logically in the right order according to the text:
- •4. True or false:
- •5. Choose the right preposition:
- •Automation of processes
- •Vocabulary:
- •1. Answer the questions:
- •2. True or False:
- •Metalworking - Historical Perspective
- •1. Answer the following questions.
- •2. Match the events with the correct dates.
- •3. Find in the text the English equivalents of the following words / expressions.
- •4. Write a summary of the text. Drawing
- •Sheet metal forming
- •Forging
- •1. Answer the following questions.
- •2. Find the following word combinations in the text:
- •3. Match the words with the correct definitions.
- •4. Translate into English:
- •Cold and Hot Forging: An Overview
- •1. Answer the following questions.
- •2. Match the words with the correct definitions.
- •3. Write a summary of the text. What is welding and what do welders do?
- •1. Before you read say if the following statements are true or false.
- •2. Read the text. What is welding and what do welders do? Check your answers in the previous exercise. Prove or correct the statements.
- •3. Find the English equivalents for the following words and word combinations.
- •4. Complete the following sentences with the information from the text.
- •5. Look at the list of types of welding and say which of them you can use.
- •From the History of Welding
- •1. Read the Text “From the History of Welding” and refer the statements 1-4 to each of the passages of the text a-d
- •Vocabulary
- •2. Say if the following is true or false. Correct the false sentences.
- •3. Answer the following questions.
- •4. Translate from Russian into English.
- •Basic Principles of Welding
- •1. Read the text and answer the questions.
- •Vocabulary
- •2. Find the English equivalents for the following words and word combinations.
- •3. Complete the following sentences.
- •4. Say if the following sentences are true or false.
- •Additional texts for reading and discussion Cold Forging
- •Hot forging
- •One of America’s great machines comes back to life
- •Designing with Protein
- •1. Fill in the gaps.
- •3. Which statement matches the text?
- •4. Which statement matches the text?
- •5. Which part of the text contains the idea?
- •6. Which part of the text answers the question?
- •7. Answer the questions:
- •Engineered proteins
- •1. Fill in the gaps.
- •2. Which statement matches the text?
- •3. Which part of the text contains the idea?
- •4. Which part of the text answers the question?
- •5. Answer the questions:
- •Existing Protein Machines
- •1. Fill in the gaps.
- •Genetic materials
- •1. Fill in the gaps.
- •2. Which part of the text contains the idea?
- •3. Which part of the text answers the question?
- •4. Answer the questions:
- •Molecular Technology Today
- •1. Fill in the gaps.
- •2. Which part of the text contains the idea?
- •3. Which part of the text answers the question?
- •4. Answer the questions:
- •The Baikonur space launching site
- •Tasks to the text.
- •1. Questions.
- •2. Find the English equivalents to the Russian words from the text:
- •3. Translate from English into Russian:
- •4. Render the text. What is the difference between a jet engine and a rocket engine?
- •1. Answer the questions:
- •2. Translate the words combinations:
- •3. Translate from Russian into English:
- •4. Say if the sentences are true or false:
- •5. Translate the text.
- •6. Render the text in Russian according to the plan.
- •Russian: r-36 (ss-9), r-36m (ss-18)
- •1. Answer the questions:
- •2. Translate from English into Russian:
- •3. Find the English equivalents:
- •4. Say if the sentences are true or false:
- •Tesla Motors
- •Corporate strategy
- •1. Answer the questions:
- •2. Translate into Russian:
- •3. Translate from Russian into English:
- •4. Say if the sentences are true or false:
- •5. Render the text using the plan:
- •Metallurgy - the technology and science of metallic mate
- •1. Answer the questions:
- •2. Say if the sentences are true or false:
- •3. Translate the words into Russian:
- •4. Translate from Russian into English:
- •5. Render the text according to the plan:
- •Text 1. Automobile
- •Assignments:
- •True, false or not given.
- •Answer the questions.
- •Complete the sentences.
- •Text 2. Audi: Bodyshells, Space frame and
- •Assignments:
- •Correct the mistakes, if any.
- •Fill in the gaps, be true to the meaning of the original text.
- •Text 3. Honda cr-V
- •Choose from the list the heading which best summarises each part of the article, there are four extra headings which you don’t need to use
- •Choose the answer (a, b, c or d) which you think fits best according to the text
- •Text 4. ‘NoName’
- •Choose the best title of the text.
- •Text 5. Volkswagen Passat
- •Assignments:
- •Answer the questions
- •True, false, or not given
- •S ome extra texts to enjoy and ponder on
- •Text e. Surface treatments of light alloys
- •Digital Signal Processing 1 (dsp)
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Vocabulary
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Computed Tomography
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Telecommunications
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Terminology
- •1. Answer the questions:
- •2. Fill in the gaps:
- •3. Match parts of the notions:
- •4. Say what is true and what is false:
- •Optical instruments
- •1. Answer the questions:
- •2. Fill in the gaps:
- •3. Say what is false and what is true:
- •4. Match the halves of the sentences:
- •Some extra texts to enjoy and ponder on Text 1. In Space and On Earth, Why Build It, When a Robot Can Build It for You?
- •Text 2. Controlling Light at Will: Metamaterials Will Change Optics
- •Text 3. Nasa Sub-Scale Solid-Rocket Motor Tests Material for Space Launch System
- •Text 4. Photography
- •Text 5. Atmospheric optics
- •Text 6. Brown Liquor and Solar Cells to Provide Sustainable Electricity
- •Text 7. Hard Electronics: Hall Effect Magnetic Field Sensors for High Temperatures and Harmful Radiation Environments
- •Text 8. Nanopower: Avoiding Electrolyte Failure in NanoscaleLithum Batteries
- •Text 9. Better Organic Electronics: Researchers Show the Way Forward for Improving Organic and Molecular Electronic Devices
- •Text 10. New High Definition Fiber Tracking Reveals Damage Caused by Traumatic Brain Injury
- •Text 11. Nanoscale Magnetic Resonance Imaging, Quantum Computer Get Nudge from New Research
- •Text 12. Brain-Imaging Technique Predicts Who Will Suffer Cognitive Decline Over Time
2. Fill in the gaps:
A laser is technically…rather than…as suggested by the acronym.
… is frequently used in the field, meaning “to produce laser light.”
A beam … has an instantaneous amplitude and phase which … with respect to time and position.
Because … device of this sort operating at microwave and radio frequencies are referred to as “masers” rather than … or “radio lasers.”
Most so-called “single wavelength” lasers actually produce … in several modes having …, often not in a single polarization.
The gain medium is a material with properties that allow it ….
The energy is typically supplied as ….
… may be provided by a flash lamp or perhaps another laser.
3. Match parts of the notions:
Laser beams can be focused …
Most “single wavelength” lasers actually produce radiation in several modes …
The gain medium is a material with properties that …
A beam produced by a thermal or other incoherent light source …
A laser which produces light by itself …
The energy is typically supplied as …
has an instantaneous amplitude and phase which vary randomly.
is technically an optical oscillator rather than an optical amplifier.
to very tiny spots, achieving a very high irradiance.
having slightly different frequencies, often not in a single polarization allow it to amplify light by stimulated emission as light at a different wavelength
an electrical current or
4. Say what is true and what is false:
The energy is supplied as an electrical current or as light at the some wavelength.
Most lasers do not contain additional elements that affect properties such as the wavelength of the emitted light and the shape of the beam.
Water is a material with properties that allow laser to amplify light by stimulated emission.
There are some lasers which are not single spatial mode and their light beam diverge as much as required by the diffraction limit
Temporal coherence implies a polarized wave at a single frequency whose phase is correlated our relatively large distance along the beam.
Optical instruments
Single lenses have a variety of applications including photographic lenses, corrective lenses, and magnifying glasses while single mirrors are used in parabolic reflectors and rear-view mirrors. Combining a number of mirrors, prisms, and lenses produces compound optical instruments which have practical uses. For example, a periscope is simply two plane mirrors aligned to allow for viewing around obstructions. The most famous compound optical instruments in science are the microscope and the telescope which were both invented by the Dutch in the late 16th century.
Microscopes were first developed with just two lenses: an objective lens and an eyepiece. The objective lens is essentially a magnifying glass and was designed with a very small focal length while the eyepiece generally has a longer focal length. This has the effect of producing magnified images of close objects. Generally, an additional source of illumination is used since magnified images are dimmer due to the conservation of energy and the spreading of light rays over a larger surface area. Modern microscopes, known as compound microscopes have many lenses in them (typically four) to optimize the functionality and enhance image stability. A slightly different variety of microscope, the comparison microscope, looks at side-by-side images to produce a stereoscopic binocular view that appears three dimensional when used by humans.
The first telescopes, called refracting telescopes were also developed with a single objective and eyepiece lens. In contrast to the microscope, the objective lens of the telescope was designed with a large focal length to avoid optical aberrations. The objective focuses an image of a distant object at its focal point which is adjusted to be at the focal point of an eyepiece of a much smaller focal length. The main goal of a telescope is not necessarily magnification, but rather collection of light which is determined by the physical size of the objective lens. Thus, telescopes are normally indicated by the diameters of their objectives rather than by the magnification which can be changed by switching eyepieces. Because the magnification of a telescope is equal to the focal length of the objective divided by the focal length of the eyepiece, smaller focal-length eyepieces cause greater magnification.
Since crafting large lenses is much more difficult than crafting large mirrors, most modern telescopes are reflecting telescopes, that is, telescopes that use a primary mirror rather than an objective lens. The same general optical considerations apply to reflecting telescopes that applied to refracting telescopes, namely, the larger the primary mirror, the more light collected, and the magnification is still equal to the focal length of the primary mirror divided by the focal length of the eyepiece. Professional telescopes generally do not have eyepieces and instead place an instrument (often a charge-coupled device) at the focal point instead.