
- •Содержание
- •Technological processes control automated systems
- •Vocabulary:
- •1. Answer the questions:
- •2. True or false:
- •3. Choose the right preposition:
- •Automation
- •1. Define the main idea of the text:
- •2. Questions to the text:
- •3. Put the following sentences logically in the right order according to the text:
- •4. True or false:
- •5. Choose the right preposition:
- •Automation of processes
- •Vocabulary:
- •1. Answer the questions:
- •2. True or False:
- •Metalworking - Historical Perspective
- •1. Answer the following questions.
- •2. Match the events with the correct dates.
- •3. Find in the text the English equivalents of the following words / expressions.
- •4. Write a summary of the text. Drawing
- •Sheet metal forming
- •Forging
- •1. Answer the following questions.
- •2. Find the following word combinations in the text:
- •3. Match the words with the correct definitions.
- •4. Translate into English:
- •Cold and Hot Forging: An Overview
- •1. Answer the following questions.
- •2. Match the words with the correct definitions.
- •3. Write a summary of the text. What is welding and what do welders do?
- •1. Before you read say if the following statements are true or false.
- •2. Read the text. What is welding and what do welders do? Check your answers in the previous exercise. Prove or correct the statements.
- •3. Find the English equivalents for the following words and word combinations.
- •4. Complete the following sentences with the information from the text.
- •5. Look at the list of types of welding and say which of them you can use.
- •From the History of Welding
- •1. Read the Text “From the History of Welding” and refer the statements 1-4 to each of the passages of the text a-d
- •Vocabulary
- •2. Say if the following is true or false. Correct the false sentences.
- •3. Answer the following questions.
- •4. Translate from Russian into English.
- •Basic Principles of Welding
- •1. Read the text and answer the questions.
- •Vocabulary
- •2. Find the English equivalents for the following words and word combinations.
- •3. Complete the following sentences.
- •4. Say if the following sentences are true or false.
- •Additional texts for reading and discussion Cold Forging
- •Hot forging
- •One of America’s great machines comes back to life
- •Designing with Protein
- •1. Fill in the gaps.
- •3. Which statement matches the text?
- •4. Which statement matches the text?
- •5. Which part of the text contains the idea?
- •6. Which part of the text answers the question?
- •7. Answer the questions:
- •Engineered proteins
- •1. Fill in the gaps.
- •2. Which statement matches the text?
- •3. Which part of the text contains the idea?
- •4. Which part of the text answers the question?
- •5. Answer the questions:
- •Existing Protein Machines
- •1. Fill in the gaps.
- •Genetic materials
- •1. Fill in the gaps.
- •2. Which part of the text contains the idea?
- •3. Which part of the text answers the question?
- •4. Answer the questions:
- •Molecular Technology Today
- •1. Fill in the gaps.
- •2. Which part of the text contains the idea?
- •3. Which part of the text answers the question?
- •4. Answer the questions:
- •The Baikonur space launching site
- •Tasks to the text.
- •1. Questions.
- •2. Find the English equivalents to the Russian words from the text:
- •3. Translate from English into Russian:
- •4. Render the text. What is the difference between a jet engine and a rocket engine?
- •1. Answer the questions:
- •2. Translate the words combinations:
- •3. Translate from Russian into English:
- •4. Say if the sentences are true or false:
- •5. Translate the text.
- •6. Render the text in Russian according to the plan.
- •Russian: r-36 (ss-9), r-36m (ss-18)
- •1. Answer the questions:
- •2. Translate from English into Russian:
- •3. Find the English equivalents:
- •4. Say if the sentences are true or false:
- •Tesla Motors
- •Corporate strategy
- •1. Answer the questions:
- •2. Translate into Russian:
- •3. Translate from Russian into English:
- •4. Say if the sentences are true or false:
- •5. Render the text using the plan:
- •Metallurgy - the technology and science of metallic mate
- •1. Answer the questions:
- •2. Say if the sentences are true or false:
- •3. Translate the words into Russian:
- •4. Translate from Russian into English:
- •5. Render the text according to the plan:
- •Text 1. Automobile
- •Assignments:
- •True, false or not given.
- •Answer the questions.
- •Complete the sentences.
- •Text 2. Audi: Bodyshells, Space frame and
- •Assignments:
- •Correct the mistakes, if any.
- •Fill in the gaps, be true to the meaning of the original text.
- •Text 3. Honda cr-V
- •Choose from the list the heading which best summarises each part of the article, there are four extra headings which you don’t need to use
- •Choose the answer (a, b, c or d) which you think fits best according to the text
- •Text 4. ‘NoName’
- •Choose the best title of the text.
- •Text 5. Volkswagen Passat
- •Assignments:
- •Answer the questions
- •True, false, or not given
- •S ome extra texts to enjoy and ponder on
- •Text e. Surface treatments of light alloys
- •Digital Signal Processing 1 (dsp)
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Vocabulary
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Computed Tomography
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Telecommunications
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Terminology
- •1. Answer the questions:
- •2. Fill in the gaps:
- •3. Match parts of the notions:
- •4. Say what is true and what is false:
- •Optical instruments
- •1. Answer the questions:
- •2. Fill in the gaps:
- •3. Say what is false and what is true:
- •4. Match the halves of the sentences:
- •Some extra texts to enjoy and ponder on Text 1. In Space and On Earth, Why Build It, When a Robot Can Build It for You?
- •Text 2. Controlling Light at Will: Metamaterials Will Change Optics
- •Text 3. Nasa Sub-Scale Solid-Rocket Motor Tests Material for Space Launch System
- •Text 4. Photography
- •Text 5. Atmospheric optics
- •Text 6. Brown Liquor and Solar Cells to Provide Sustainable Electricity
- •Text 7. Hard Electronics: Hall Effect Magnetic Field Sensors for High Temperatures and Harmful Radiation Environments
- •Text 8. Nanopower: Avoiding Electrolyte Failure in NanoscaleLithum Batteries
- •Text 9. Better Organic Electronics: Researchers Show the Way Forward for Improving Organic and Molecular Electronic Devices
- •Text 10. New High Definition Fiber Tracking Reveals Damage Caused by Traumatic Brain Injury
- •Text 11. Nanoscale Magnetic Resonance Imaging, Quantum Computer Get Nudge from New Research
- •Text 12. Brain-Imaging Technique Predicts Who Will Suffer Cognitive Decline Over Time
1. Fill in the gaps.
1) Engineered proteins will … and join molecules as enzymes do.
a) do b) split c) replace d) open
2) Chemists cannot yet … molecular motions.
a) move b) construct c) direct d) rename
3) Like an enzyme, … will then bond the molecules together.
a) machine b) flesh c) protein d) liquid
2. Which statement matches the text?
Like a machine, enzyme will bond the molecules together.
A protein machine will grasp a large molecule while bringing a small molecule up against it in just the right place.
A flexible, programmable protein machine will bring small molecules up to build objects of metal.
Any machine can grasp a large molecule while bringing a small molecule up against it in the right place.
3. Which part of the text contains the idea?
1) Chemists yet have no direct control over the tumbling motions of molecules, and so the molecules are free to react in any way they can.
a) 1 b) 2 c) 3 d) 4 e) 5 f) 6 g) 7
2) Nanomachines will handle molecules and will join them to the workpiece anywhere desired, not just to the end of a chain.
a) 1 b) 2 c) 3 d) 4 e) 5 f) 6 g) 7
4. Which part of the text answers the question?
What molecule has a hundred hydrogen atoms on its surface?
a) 1 b) 2 c) 3 d) 4 e) 5 f) 6 g) 7
5. Answer the questions:
How can chemists control the tumbling motions of molecules in a liquid?
How can chemists form patterns of complex molecules?
How will a programmable protein machine work?
Can ribosomes build only the loose folds of a protein?
What will turn us to nanomachines?
Existing Protein Machines
(1) These protein hormones and enzymes selectively stick to other molecules. An enzyme changes its target's structure, then moves on; a hormone affects its target's behavior only so long as both remain stuck together. Enzymes and hormones can be described in mechanical terms, but their behavior is more often described in chemical terms.
(2) But other proteins serve basic mechanical functions. Some push and pull, some act as cords or struts, and parts of some molecules make excellent bearings. The machinery of muscle, for instance, has gangs of proteins that reach, grab a "rope" (also made of protein), pull it, then reach out again for a fresh grip; whenever you move, you use these machines. Amoebas and human cells move and change shape by using fibers and rods that act as molecular muscles and bones. A reversible, variable-speed motor drives bacteria through water by turning a corkscrew-shaped propeller. If a hobbyist could build tiny cars around such motors, several billions of billions would fit in a pocket, and 150-lane freeways could be built through your finest capillaries. (3) Simple molecular devices combine to form systems resembling industrial machines. In the 1950s engineers developed machine tools that cut metal under the control of a punched paper tape. A century and a half earlier, Joseph-Marie Jacquard had built a loom that wove complex patterns under the control of a chain of punched cards. Yet over three billion years before Jacquard, cells had developed the machinery of the ribosome. Ribosomes are proof that nanomachines built of protein and RNA can be programmed to build complex molecules.
(4) Then consider viruses. One kind, the T4 phage, acts like a spring-loaded syringe and looks like something out of an industrial parts catalog. It can stick to a bacterium, punch a hole, and inject viral DNA (yes, even bacteria suffer infections). Like a conqueror seizing factories to build more tanks, this DNA then directs the cell's machines to build more viral DNA and syringes. Like all organisms, these viruses exist because they are fairly stable and are good at getting copies of themselves made.
(5) Whether in cells or not, nanomachines obey the universal laws of nature. Ordinary chemical bonds hold their atoms together, and ordinary chemical reactions (guided by other nanomachines) assemble them. Protein molecules can even join to form machines without special help, driven only by thermal agitation and chemical forces. By mixing viral proteins (and the DNA they serve) in a test tube, molecular biologists have assembled working T4 viruses. This ability is surprising: imagine putting automotive parts in a large box, shaking it, and finding an assembled car when you look inside! Yet the T4 virus is but one of many self-assembling structures. Molecular biologists have taken the machinery of the ribosome apart into over fifty separate protein and RNA molecules, and then combined them in test tubes to form working ribosomes again.
(6) To see how this happens, imagine different T4 protein chains floating around in water. Each kind folds up to form a lump with distinctive bumps and hollows, covered by distinctive patterns of oiliness, wetness, and electric charge. Picture them wandering and tumbling, jostled by the thermal vibrations of the surrounding water molecules. From time to time two bounce together, then bounce apart. Sometimes, though, two bounce together and fit, bumps in hollows, with sticky patches matching; they then pull together and stick. In this way protein adds to protein to make sections of the virus, and sections assemble to form the whole.