
- •Содержание
- •Technological processes control automated systems
- •Vocabulary:
- •1. Answer the questions:
- •2. True or false:
- •3. Choose the right preposition:
- •Automation
- •1. Define the main idea of the text:
- •2. Questions to the text:
- •3. Put the following sentences logically in the right order according to the text:
- •4. True or false:
- •5. Choose the right preposition:
- •Automation of processes
- •Vocabulary:
- •1. Answer the questions:
- •2. True or False:
- •Metalworking - Historical Perspective
- •1. Answer the following questions.
- •2. Match the events with the correct dates.
- •3. Find in the text the English equivalents of the following words / expressions.
- •4. Write a summary of the text. Drawing
- •Sheet metal forming
- •Forging
- •1. Answer the following questions.
- •2. Find the following word combinations in the text:
- •3. Match the words with the correct definitions.
- •4. Translate into English:
- •Cold and Hot Forging: An Overview
- •1. Answer the following questions.
- •2. Match the words with the correct definitions.
- •3. Write a summary of the text. What is welding and what do welders do?
- •1. Before you read say if the following statements are true or false.
- •2. Read the text. What is welding and what do welders do? Check your answers in the previous exercise. Prove or correct the statements.
- •3. Find the English equivalents for the following words and word combinations.
- •4. Complete the following sentences with the information from the text.
- •5. Look at the list of types of welding and say which of them you can use.
- •From the History of Welding
- •1. Read the Text “From the History of Welding” and refer the statements 1-4 to each of the passages of the text a-d
- •Vocabulary
- •2. Say if the following is true or false. Correct the false sentences.
- •3. Answer the following questions.
- •4. Translate from Russian into English.
- •Basic Principles of Welding
- •1. Read the text and answer the questions.
- •Vocabulary
- •2. Find the English equivalents for the following words and word combinations.
- •3. Complete the following sentences.
- •4. Say if the following sentences are true or false.
- •Additional texts for reading and discussion Cold Forging
- •Hot forging
- •One of America’s great machines comes back to life
- •Designing with Protein
- •1. Fill in the gaps.
- •3. Which statement matches the text?
- •4. Which statement matches the text?
- •5. Which part of the text contains the idea?
- •6. Which part of the text answers the question?
- •7. Answer the questions:
- •Engineered proteins
- •1. Fill in the gaps.
- •2. Which statement matches the text?
- •3. Which part of the text contains the idea?
- •4. Which part of the text answers the question?
- •5. Answer the questions:
- •Existing Protein Machines
- •1. Fill in the gaps.
- •Genetic materials
- •1. Fill in the gaps.
- •2. Which part of the text contains the idea?
- •3. Which part of the text answers the question?
- •4. Answer the questions:
- •Molecular Technology Today
- •1. Fill in the gaps.
- •2. Which part of the text contains the idea?
- •3. Which part of the text answers the question?
- •4. Answer the questions:
- •The Baikonur space launching site
- •Tasks to the text.
- •1. Questions.
- •2. Find the English equivalents to the Russian words from the text:
- •3. Translate from English into Russian:
- •4. Render the text. What is the difference between a jet engine and a rocket engine?
- •1. Answer the questions:
- •2. Translate the words combinations:
- •3. Translate from Russian into English:
- •4. Say if the sentences are true or false:
- •5. Translate the text.
- •6. Render the text in Russian according to the plan.
- •Russian: r-36 (ss-9), r-36m (ss-18)
- •1. Answer the questions:
- •2. Translate from English into Russian:
- •3. Find the English equivalents:
- •4. Say if the sentences are true or false:
- •Tesla Motors
- •Corporate strategy
- •1. Answer the questions:
- •2. Translate into Russian:
- •3. Translate from Russian into English:
- •4. Say if the sentences are true or false:
- •5. Render the text using the plan:
- •Metallurgy - the technology and science of metallic mate
- •1. Answer the questions:
- •2. Say if the sentences are true or false:
- •3. Translate the words into Russian:
- •4. Translate from Russian into English:
- •5. Render the text according to the plan:
- •Text 1. Automobile
- •Assignments:
- •True, false or not given.
- •Answer the questions.
- •Complete the sentences.
- •Text 2. Audi: Bodyshells, Space frame and
- •Assignments:
- •Correct the mistakes, if any.
- •Fill in the gaps, be true to the meaning of the original text.
- •Text 3. Honda cr-V
- •Choose from the list the heading which best summarises each part of the article, there are four extra headings which you don’t need to use
- •Choose the answer (a, b, c or d) which you think fits best according to the text
- •Text 4. ‘NoName’
- •Choose the best title of the text.
- •Text 5. Volkswagen Passat
- •Assignments:
- •Answer the questions
- •True, false, or not given
- •S ome extra texts to enjoy and ponder on
- •Text e. Surface treatments of light alloys
- •Digital Signal Processing 1 (dsp)
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Vocabulary
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Computed Tomography
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Telecommunications
- •Vocabulary
- •I. Answer the question:
- •II. Decide which statement matches the text:
- •III. Decide which statement does not match the text:
- •IV. Decide which definitions match the following terms:
- •V. Fill in the gaps with the words from the list below:
- •VI. Match the words in the right and left columns to make up a word expression from the text:
- •Terminology
- •1. Answer the questions:
- •2. Fill in the gaps:
- •3. Match parts of the notions:
- •4. Say what is true and what is false:
- •Optical instruments
- •1. Answer the questions:
- •2. Fill in the gaps:
- •3. Say what is false and what is true:
- •4. Match the halves of the sentences:
- •Some extra texts to enjoy and ponder on Text 1. In Space and On Earth, Why Build It, When a Robot Can Build It for You?
- •Text 2. Controlling Light at Will: Metamaterials Will Change Optics
- •Text 3. Nasa Sub-Scale Solid-Rocket Motor Tests Material for Space Launch System
- •Text 4. Photography
- •Text 5. Atmospheric optics
- •Text 6. Brown Liquor and Solar Cells to Provide Sustainable Electricity
- •Text 7. Hard Electronics: Hall Effect Magnetic Field Sensors for High Temperatures and Harmful Radiation Environments
- •Text 8. Nanopower: Avoiding Electrolyte Failure in NanoscaleLithum Batteries
- •Text 9. Better Organic Electronics: Researchers Show the Way Forward for Improving Organic and Molecular Electronic Devices
- •Text 10. New High Definition Fiber Tracking Reveals Damage Caused by Traumatic Brain Injury
- •Text 11. Nanoscale Magnetic Resonance Imaging, Quantum Computer Get Nudge from New Research
- •Text 12. Brain-Imaging Technique Predicts Who Will Suffer Cognitive Decline Over Time
Basic Principles of Welding
1. Read the text and answer the questions.
What is a weld?
How can the heat be supplied for welding?
Is pressure employed in solid-phase processes?
What does an arc column consist of?
How is heat applied during welding?
What is the role of inert atmospheres?
What can make a joint brittle while welding?
What does the weld metal comprise in arc welding?
What is the base metal influenced by?
How can residual stress in welded structures be controlled?
A weld can be defined as a coalescence of metals produced by heating to a suitable temperature with or without the application of pressure, and with or without the use of a filler material.
In fusion welding a heat source generates sufficient heat to create and maintain a molten pool of metal of the required size. The heat may be supplied by electricity or by a gas flame. Electric resistance welding can be considered fusion welding because some molten metal is formed.
Solid-phase processes produce welds without melting the base material and without the addition of a filler metal. Pressure is always employed, and generally some heat is provided. Frictional heat is developed in ultrasonic and friction joining, and furnace heating is usually employed in diffusion bonding.
The electric arc used in welding is a high-current, low-voltage discharge generally in the range 10-2.000 amperes at 10-50 volts. An arc column is complex but. broadly speaking, consists of a cathode that emits electrons, a gas plasma for current conduction, and an anode region that becomes comparatively hotter than the cathode due to electron bombardment. Therefore, the electrode, if consumable, is made positive and. if nonconsumable, is made negative. A direct current (dc) arc is usually used, but alternating current (ac) arcs can be employed.
Total energy input in all welding processes exceeds that which is required to produce a joint, because not all the heat generated can be effectively utilized. Efficiencies vary from 60 to 90 percent, dependmg on the process: some special processes deviate widely from this figure. Heat is lost by conduction through the base metal and by radiation to the surroundings.
Most metals, when heated, react with the atmosphere or other nearby metals. These reactions can be extremely detrimental to the properties of a welded joint. Most metals, for example, rapidly oxidize when molten. A layer of oxide can prevent proper bonding of the metal. Molten-metal droplets coated with oxide become entrapped in the weld and make the joint brittle. Some valuable materials added for specific properties react so quickly on exposure to the air that the metal deposited does not have the same composition as it had initially. These problems have led to the use of fluxes and inert atmospheres.
In fusion welding the flux has a protective role in facilitating a controlled reaction of the metal and then preventing oxidation by forming a blanket over the molten material. Fluxes can be active and help in the process or inactive and simply protect the surfaces during joining.
Inert atmospheres play a protective role similar to that of fluxes. In gas-shielded metal-arc and gas-shielded tungsten-arc welding an inert gas — usually argon—flows from an annulus surrounding the torch in a continuous stream, displacing the air from around the arc. The gas does not chemically react with the metal but simply protects it from contact with the oxygen in the air.
The metallurgy of metal joining is important to the functional capabilities of the joint. The arc weld illustrates all the basic features of a joint. Three zones result from the passage of a welding arc: (1) the weld metal, or fusion zone, (2) the heat-affected zone, and (3) the unaffected zone. The weld metal is that portion of the joint that has been melted during welding. The heat-affected zone is a region adjacent to the weld metal that has not been welded but has undergone a change in microstructure or mechanical properties due to the heat of welding. The unaffected material is that which was not heated sufficiently to alter its properties.
Weld-metal composition and the conditions under which it freezes (solidifies) significantly affect the ability of the joint to meet service requirements. In arc welding, the weld metal comprises filler material plus the base metal that has melted. After the arc passes, rapid cooling of the weld metal occurs. A one-pass weld has a cast structure with columnar grains extending from the edge of the molten pool to the centre of the weld. In a multipass weld, tins cast structure may be modified, depending on the particular metal that is being welded.
The base metal adjacent to the weld, or the heat-affected zone, is subjected to a range of temperature cycles, and its change in structure is directly related to the peak temperature at any given point, the time of exposure, and the cooling rates. The types of base metal are too numerous to discuss here, but they can be grouped in three classes: (1) materials unaffected by weldmg heat, (2) materials hardened by structural change, (3) materials hardened by precipitation processes.
Welding produces stresses in materials. These forces are induced by contraction of die weld metal and by expansion and then contraction of the heat-affected zone. The unheated metal imposes a restraint on the above, and as contraction predominates, die weld metal cannot contract freely, and a stress is built up in the joint. This is generally known as residual stress, and for some critical applications must be removed by heat treatment of the whole fabrication. Residual stress is unavoidable in all welded structures, and if it is not controlled bowing or distortion of the weldment will take place. Control is exercised by welding technique, jigs and fixtures, fabrication procedures, and final heat treatment.