
- •1.2.Загрязнение окружающей среды
- •1.3.Перерасход топлива
- •1.4. Причины низкого кпд современных двс и других топливопотребляющих агрегатов
- •Лекция 2 влияние качества на расход топлива
- •2.1 Неполное сгорание топлива
- •2.2. Влияние качества на расход топлива
- •2.3. История магнитодинамической обработки топлива
- •Лекция 3 теоретические основы магнитодинамической обработки топлива
- •Физика воздействия магнитного поля на углеводородное топливо
- •3.2.Анализ известных конструкций магнетизеров
- •4.1. Конструкция магнетизера топлива “мт-1”
- •4.2. Требования к установке магнетизера “мт-1”
- •4.3. Правила монтажа магнетизера “мт-1”
- •4.4. Эксплуатация магнетизера “мт-1”
- •4.5. Влияние установки магнетизера “мт-1” на работу двигателя
- •5.1. Магнетизер “Мастер-Бернер”
- •5.2.Автомобильный газ
- •5.3.Обработка охлаждающей жидкости магнитным полем
- •6.1.Наномодификатор трения “мегафорс”
- •7.1.Критика существующих моторов авто и их систем подготовки топлива
- •7.2.Конструкция и принцип действия стандартных топливных форсунок инжекторных двс
- •7.3. Постановка задачи
- •Лекция 8 инжекторный вихревой “экотоп”
- •8.1.Вихревые технологии для приготовления топливной смеси в двс
- •8.2.Вихревые смесители твс для инжекторных двс
- •8.3 Конструкция совмещенной вихревой топливной форсунки с электростатическим распылителем
- •Обозначения элементов к блок-схеме конструкции модернизированной вихревой топливной форсунки:
- •8.4. Электростатический распылитель и активатор топлива
- •8.5. Описание работы устройства подготовки топливной смеси для инжекторного двс
- •8.6. Разработка и изготовление опытного образца завихрителя топлива для стандартной топливной форсунки двс
- •Инжекторный вихревой “экотоп”
- •Введение
- •9.1. “Русский турбонаддув” в двс паро-топливным газом под давлением на основе “скороварки Дудышева”
- •9.4. Принцип работы оригинального простого устройства “Русский турбонаддув”
- •9.5.Термо-химические реакции в реакторе сложного взаимодействия выхлопных газов с водным углеводородным раствором при наличии железной сетки– мочалки –катализатора реакций
- •Магнитоэлектрическая активация топлива
- •10.1. Комбинированный метод магнитоэлектрической активации топлива, окисления и процесса горения пламени
- •И эффективный очиститель автомотора
- •10.3.Электростатическое распыление водо-топливных эмульсий
- •11.2. Модернизация конструкции штатной свечи зажигания двс
- •11.4. Ожидаемые технические показатели от применения магнитной свечи зажигания с вращением электродуги в двс
- •11.5. Технические преимущества магнитной свечи зажигания
- •11.6. Магнитоэлектрическая свеча зажигания с вращающейся электрической дугой для двигателей внутреннего сгорания
- •11.7.Экономичная магнитная топливная горелка Дудышева с вращающейся электрической дугой
- •11.8. Принцип работы универсальной магнитной топливной горелки
- •11.9. Устройство экономии топлива и снижения токсичности выхлопных газов моторов автотранспорта
- •Конструкция вихревого экотопа
- •Принцип работы «экотопа» -вихревого смесителя топливной смеси
- •Универсальный вихревой дозатор – смеситель – активатор топливной смеси экономичный вихревой карбюратор дудышева
- •Совмещенный бесконтактный топливный блок «электрокулоновский топливный насос – электростатическая форсунка- свеча«
- •Литература
- •12.1 Интенсифицирование горения топлива с помощью сильного электрического поля
- •12.4.Новая конструкция модернизированного двс
- •13.1.Низкоэнергетическая диссоциация жидкостей
- •13.3.Трудности разложения воды на н2 и о2
- •13.4. Физика нового процесса электродиссоциации воды
- •13.5. Новый электромобиль с линейным полевым двигателем
- •13.6. Водородное топливо
- •Струйно-кавитационная обработка топлива
- •14.1.Регенерация масел
- •14.2. Rvs технологии смазки узлов автотранспорта
- •Контрольные вопросы
14.1.Регенерация масел
Регенерация отработанных масел является одним из основных ресурсосберегающих процессов.
Регенерация осуществляется несколькими методами: физическими, физико-химическими и химическими, применяемые в различных сочетаниях, что дает возможность регенерировать отработанные масла нескольких марок и различной степени отработанности [20, 21].
Регенерация производится на установке РМ-50-65, которая относится к маслорегенерационному оборудованию универсального типа. С помощью установки можно восстанавливать до первоначального качества индустриальные масла всех марок, а также компрессорные, трансформаторные, моторные и др.
Техническая характеристика:
Производительность установки по отработанному маслу, л/ч
Автомобильное – 75
Дизельное – 50
Индустриальное и трансформаторное – до 100
Расход пара на нагрев масла в реакторе и мешалке, кг/ч – 5
Мощность, кВт
Электропечи –16, 5
Электродвигателя насоса РЗ-4, 5 – 1, 7
Электродвигателя перемешивающего устройства – 1, 0
Электродвигателя скальчатого насоса – 0, 6
Электродвигателя вакуумного насоса ВН-461М – 0, 6
общая потребляемая мощность – 22, 1
Число фильтропрессов – 2
Фильтрующая поверхность рамочного фильтр-пресса, м2 –2 Производительность скальчатого насоса (одной скалки), л/ч – 100
Габариты (высота X ширина X длина), мм
Реактор 2835 х 3050 х 1520
Фильтрпресс 1020 х 1186 х530
Технологическое оборудование 2400 х 2240 х1330
Вес установки, кГ – 3064
Обслуживающий персонал, чел – 1
Установка РМ-50-65 выпускается серийно.
Основные узлы установки смонтированы на четырех металлических каркасах. Бак для чистого масла, шестеренчатые насосы и электрораспределительный щит, не помещенные на каркасы, устанавливают на месте монтажа установки. Установка снабжена контрольно-измерительными приборами (манометрами, термометрами) предохранительными клапанами, измерительными устройствами.
Технологическая схема регенерации масел складывается из следующих операций:
– обработка “нефильтрующихся” масел коагуляторами;
– промывка водой после коагуляции щелочными поверхностно-активными веществами;
– последовательная обработка отстоявшегося масла и после коагуляции отбеливающей глиной и водой;
– дополнительная контактная обработка масла отбеливающей глиной в системе электропечь-испаритель в токе нагрузочного водяного пара;
– отгон горючего и воды из масла;
– фильтрация масла.
Предварительно отстоянное от воды и загрязнений масло подается шестеренчатым насосом в реактор. Отстой от воды и загрязнений производится в специальном отстойнике, оборудованном паровым или электрическим нагревателем.
Реактор представляет собой вертикальную цилиндрическую емкость с коническим дном. Масло в нем нагревается до 80°С паром, проходящим по змеевику, обрабатывается поверхностно-активным веществом (коагуляция) и промывается водой.
Из ректора отстоянное масло после коагуляции и промывки подается в мешалку. Мешалка представляет собой вертикальную цилиндрическую емкость с коническим дном, краном для спуска остатка и плоской крышкой с откидной частью. На крышке установлен откидной бункер для отбеливающей глины, бочек для воды, вентиляционная труба, механизм для поплавкового указателя уровня и электродвигатель привода перемешивающего устройства. Внутри мешалки находится перемешивающее устройство, паровой змеевик для нагрева масла.
В мешалке масло снова подогревается до 80° С паром, проходящим по змеевику. Возможно также нагревать масло путем прокачки его через электропечь. В подогретое масло из бункера засыпают отбеливающую глину (до 5% к весу масла). Одновременно включают электродвигатель перемешивающего механизма. Продолжительностью перемешивания 15–20мин. Затем в мешалку добавляют воду. Перемешивание масла с отбеливающей глиной и водой продолжается еще 15–20 мин до образования однородной смеси. При непрерывно работающем перемешивающем устройстве смесь подается скальчатым насосом на циркуляцию для вывода установки на режим по схеме электропечь-испаритель – скальчатый насос-мешалка.
Циркуляция смеси продолжается 15–20 мин. до достижения на выходе из электропечи температуры масла, обеспечивающей отгон топливных фракций.
После выхода на режим установка работает следующим образом. Нагретая смесь из электропечи поступает в циклонный испаритель для отделения паров горючего и воды. Испаритель состоит из верхнего полого цилиндра, конуса и нижнего цилиндра, являющегося частью водяного холодильника. В верхней части испарителя установлены две отбойные тарелки.
В среднюю часть верхнего цилиндра по касательной к его поверхности с большой скоростью (10-20 м/сек) подают масляную смесь. Поступательное движение смеси преобразуется во вращательное. Развивающиеся при этом центробежные силы отбрасывают масло и частицы отбеливающей глины к боковой поверхности, по которой стекают вниз. Пары горючего и воды, оказавшиеся в средней части потока, отсасываются вакуум-насосом ВН-416М через верхнюю часть испарителя в холодильник и сборник отгона, куда, поступает уже конденсат.
Масло вместе с отбеливающей глиной из нижней части испарителя, где оно охлаждается, поступает на фильтрацию.
Регенерация трансформаторных, компрессорных, индустриальных и других специальных масел на установке РМ-50-65 осуществляется по схеме, исключающей водную промывку и отгон горючего.
Для более эффективной работы установки возможна замена отбеливающей глины, пригодной только для одноразового использования, алюмогелем или другими адсорбентами многократного использования, что позволяет добиться еще большей экономии.