
- •2. Мотивация
- •3. История создания ядерного оружия
- •3.1. Первое испытание
- •3.2. Военное применение
- •3.3. Создание ядерного оружия в ссср
- •3.3. Первое ядерное испытание ссср
- •4.Тротиловый эквивалент
- •5.Цепная реакция
- •6. Классификация ядерного оружия
- •6.1 Урановая бомба
- •6.2 Термоядерная бомба
- •6.3. Нейтронное оружие
- •7. Схемы подрыва бомб
- •8. Разработка ядерного оружия
- •8.1. Саров
- •8.2. Снежинск
- •9. Количество проведенных испытаний.
- •10. Заключение
- •11. Список литературы
3.3. Первое ядерное испытание ссср
В районе г. Семипалатинска был построен испытательный полигон. Ровно в 7.00 утра 29 августа 1949 года на этом полигоне было подорвано первое советское ядерное устройство под кодовым названием "РДС-1". План "Тройан", согласно которому на 70 городов СССР должны были быть сброшены атомные бомбы, был сорван из-за угрозы ответного удара. Событие, происшедшее на Семипалатинском полигоне, известило мир о создании в СССР ядерного оружия, что положило конец американскому монополизму на владение новым для человечества оружием.
4.Тротиловый эквивалент
Троти́ловый эквивалент — мера энерговыделения высокоэнергетических событий, выраженная в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии.
Так, энергия взрыва ядерной бомбы «Малыш» над Хиросимой 6 августа 1945 года по разным оценкам составляет от 13 до 18 кт ТНТ. Для сравнения, общее мировое потребление электроэнергии за 2005 год (5×1020 Дж) равно 120 Гт ТНТ, или в среднем 3,8 кт в секунду.
Мощность ядерного заряда измеряется в тротиловом эквиваленте — количестве тринитротолуола, которое нужно взорвать для получения той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт). Тротиловый эквивалент условен: во-первых, распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса и, в любом случае, сильно отличается от химического взрыва; во-вторых, просто невозможно добиться полного сгорания соответствующего количества взрывчатого вещества.
5.Цепная реакция
Идея цепной реакции деления заключается в использовании вылетевших в процессе деления нейтронов для деления новых ядер образованием новых нейтронов деления и т.д
Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов (отношение числа нейтронов в двух последовательных поколениях ) был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп также может поглощать нейтроны, но при этом не возникает цепной реакции. Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу.
6. Классификация ядерного оружия
Все ядерные боеприпасы могут быть разделены на две основные категории:
«Атомные» — однофазные или одноступенчатые устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжелых элементов (урана-235 или плутония) с образованием более лёгких элементов.
«Водородные» — двухфазные или двухступенчатые устройства, в которых последовательно развиваются два физических процесса, локализованных в различных областях пространства: на первой стадии основным источником энергии является реакция деления ядер, а на второй реакции деления и термоядерного синтеза используются в различных пропорциях, в зависимости от типа и настройки боеприпаса. Первая стадия запускает вторую, в ходе которой выделяется наибольшая часть энергии взрыва. Термин термоядерное оружие используется в качестве синонима для «водородного».
Иногда в отдельную категорию выделяется нейтронное оружие — двухфазный боеприпас малой мощности (от 1 кт до 25 кт), в котором 50 — 75 % энергии получается за счет термоядерного синтеза. Поскольку основным переносчиком энергии при синтезе являются быстрые нейтроны, то при взрыве такого боеприпаса выход нейтронов может в несколько раз превышать выход однофазных ядерных устройств сравнимой мощности. За счет этого достигается существенно больший вес поражающих факторов нейтронное излучение и наведённая радиоактивность (до 30 % от общего энерговыхода), что может быть важным с точки зрения задачи уменьшения радиоактивных осадков и снижения разрушений на местности при высокой эффективности применения против танков и живой силы. Следует отметить мифический характер представлений о том, что нейтронное оружие поражает исключительно людей и оставляет в сохранности строения. По разрушительному воздействию взрыв нейтронного боеприпаса в сотни раз превосходит любой неядерный боеприпас.
Принято делить ядерные боеприпасы по мощности на пять групп:
сверхмалые (менее 1 кт);
малые (1 — 10 кт);
средние (10 — 100 кт);
крупные (большой мощности) (100 кт — 1 Мт);
сверхкрупные (сверхбольшой мощности) (свыше 1 Мт).