
Задание на курсовой проект
По результатам эксперимента, представленных в таблице 1, определить модель системы в виде уравнения регрессии
аналитически и в Excel
Рассчитать коэффициент детерминации аналитически и в Excel, сделать вывод о возможности использования модели для прогноза
Таблица 1 – Исходные данные
-
№ опыта
x – входная величина
Yi – выходная величина
1
3
8,3
2
4
8,2
3
5
8,0
4
6
7,8
5
7
7,7
Графически построить линию регрессии и показать результаты опытов (метод Асковица)
Провести проверку адекватности полученной модели
Провести проверку значимости коэффициентов
Введение
Теория идентификации – научно-техническая дисциплина, изучающая построение моделей оценки параметров моделей. Предмет изучения – методы построения моделей и определение статических и динамических параметров.
Проблемы идентификации и диагностики связаны с разработкой технических устройств и алгоритмов обнаружения и распознавания объектов с требуемой точностью детализации.
Идентификация – процедура построения оптимальной (наилучшей в определённом смысле) математической модели и объекта по реализациям его наблюдаемых входных и выходных сигналов.
Жизненный цикл любой системы (объекта) состоит из этапов проектирования, производства и эксплуатации. Как на этапе создания, так и на этапе эксплуатации сложных автоматических и автоматизированных систем управления возникает необходимость определять текущие свойства этих систем. Свойства систем, в свою очередь, определяют их качество. К каждому из свойств предъявляются определенные требования, вытекающие из условий целевого применения системы или объекта. Несоответствие хотя бы одного из этих свойств установленным нормативной эксплуатационно-технической документацией требованиям свидетельствует о наличии в системе дефекта /1/.
В государственных стандартах дефект определяется как любое несоответствие того или иного изделия или системы требованиям, установленным нормативно-технической документацией. При этом дефект интерпретируется как некоторый изъян (недостаток) системы, являющийся результатом либо ошибки при его конструкторской разработке и изготовлении, либо использования некачественных комплектующих материалов и элементов, либо отклонения технологического процесса изготовления от заданного, либо несоблюдения установленных правил эксплуатации и применения, либо различного рода повреждений из-за воздействия непредусмотренных дестабилизирующих факторов (температурных, радиационных, ударных, акустических, климатических и т.п.).
Дефекты приводят к появлению отказов в системах. В динамических системах отказы принято классифицировать по форме возникновения, по характеру проявления, по причине возникновения, по времени существования и т. п. Кроме того, отказы обычно делят на отказы, приводящие к изменению динамических свойств системы и отказы в каналах передачи информации.
Таким образом, прежде чем допустить изготовленную систему к использованию по назначению необходимо проверить тем или иным способом ее на соответствие установленным требованиям по всей совокупности рассматриваемых свойств. Такая проверка осуществляется путем сопоставления измеренных значений показателей свойств объекта с их заданными (расчетными) значениями. В процессе функционирования системы также необходимо периодически осуществлять такие проверки с тем, чтобы своевременно выявлять дефекты и принимать необходимые меры к их устранению ид уменьшению вредных последствий.
Техническое состояние системы - совокупность подверженных изменению в процессе производства и эксплуатации свойств системы (объекта), характеризующих степень его функциональной пригодности в заданных условиях целевого применения. Определить техническое состояние - значит, выяснить, обладает ли система набором требуемых свойств, обеспечивающих пригодность ее к целевому применению и правильность выполнения ею своих функций непосредственно в процессе эксплуатации (целевого применения) и если не обладает, то по причине каких дефектов.
Техническое диагностирование – процесс определения технического состояния системы. Основными целями диагностирования являются проверки исправности, работоспособности, правильности функционирования системы (объекта) и поиск отказов в них в случае отрицательного исхода какой-либо из названных проверок.
Работоспособная система будет правильно функционировать во всех режимах и в течение всего времени работы. Исправная система всегда работоспособна и правильно функционирует. Правильно функционирующий объект может быть неработоспособен. Работоспособный объект также может быть неисправным.
Одной из важнейших задач технического диагностирования является поиск неисправностей, то есть указание мест и причин возникновения в системах неисправностей. После устранения неисправностей система становится исправной, работоспособной, правильно функционирующей.
Исправные и все неисправные состояния системы образуют множество ее технических состояний. Каждому из технических состояний системы соответствует определенная совокупность ее свойств, которая характеризуется соответствием (или несоответствием) качества системы определенным требованиям.
Получение исчерпывающих сведений о структуре и параметрах систем, находящихся в различных технических состояниях, включая и неработоспособные состояния, не всегда возможно в реальных условиях. Это связано с тем, какой дефект возник в системе: выход элемента, подсистемы из строя за счет обрыва электрических цепей вызовет затруднение в определении математической модели; скачкообразное изменение структуры системы в результате включения в работу новых подсистем или узлов или их выключения; постепенное изменение параметров, а иногда и структуры отдельных узлов и блоков позволит проводить идентификацию параметров и структуры математической модели системы в процессе ее нормального функционирования.
Обычно полные математические модели систем получают на этапе их создания, путем проведения значительной по объему теоретической проработки и экспериментальных исследований. В процессе нормального функционирования чаще всего модель не строят, а уточняют ее параметры, а иногда и структуру. Это сокращает время поиска дефектов.
Таким образом, априорная информация о системе, полученная на этапе проектирования, имеет важное значение при проведении идентификации для целей технического диагностирования. Чем больше объем информации, тем быстрее и точнее определяется техническое состояние системы.
Методы идентификации, основанные на регрессионных процедурах с использованием метода наименьших квадратов, применимы как к линейным, так и к нелинейным системам и облегчают проведение идентификации по нескольким входам одновременно. Более того, регрессионные методы позволяют осуществлять идентификацию в реальном масштабе времени, поскольку основаны на измерениях входных и выходных сигналов, которые можно получить как в процессе нормального функционирования системы (пассивный эксперимент), так и при испытаниях систем - проведении активного эксперимента. Основные требования к данному методу заключаются в том, что в течение периода, пока выполняются измерения, параметры идентифицируемого процесса (системы) принимаются стационарными или квазистационарными. Этот период должен быть не менее mТ, где Т – интервал измерения, a m - число идентифицируемых параметров /1/.