
- •Глава 1. Введение в автоматизированное проектирование
- •1.1. Понятие проектирования
- •1.2. Принципы системного подхода
- •1.3. Уровни проектирования
- •1.4. Стадии проектирования
- •1.5. Модели и их параметры в сапр
- •1.6. Проектные процедуры
- •1.7. Жизненный цикл изделий
- •1.8. Структура сапр
- •1.9. Введение в cals-технологии
- •1.10. Этапы проектирования автоматизированных систем
- •Лекция 2. Техническое обеспечение сапр
- •2.1. Требования к техническому обеспечению сапр
- •2.2. Вычислительные системы для сапр
- •2.2.1. Процессоры эвм
- •2.2.2. Память эвм
- •2.2.3. Мониторы
- •2.2.4. Периферийные устройства
- •2.2.5. Шины компьютера
- •2.3. Типы вычислительных машин и систем
- •2.4. Персональный компьютер
- •2.5. Рабочие станции
- •2.6. Архитектуры серверов и суперкомпьютеров
- •2. В.Н. Дацюк, а.А. Букатов, а.И. Жегуло/ методическое пособие по курсу "Многопроцессорные системы и параллельное программирование". -http://rsusu1.Rnd.Runnet.Ru/tutor/method/m1/content.Html
- •2.7. Примеры серверов
- •2.8. Суперкомпьютеры XXI века
- •Лекция 3. Математическое обеспечение анализа проектных решений
- •3.1. Требования к математическим моделям и методам в сапр
- •3.2. Фазовые переменные, компонентные и топологические уравнения
- •3.3. Основные понятия теории графов
- •3.4. Представление топологических уравнений
- •3.5. Особенности эквивалентных схем механических объектов
- •3.6. Методы формирования математических моделей на макроуровне
- •3.7. Выбор методов анализа во временной области
- •3.8. Алгоритм численного интегрирования систем дифференциальных уравнений
- •3.9. Методы решения систем нелинейных алгебраических уравнений
- •3.10. Методы решения систем линейных алгебраических уравнений
- •1. Alglib User Guide. - http://alglib.Sources.Ru/linequations/general/lu.Php. - Проверено 15.12.2009. Лекция 4. Математическое обеспечение анализа проектных решений
- •4.1. Математические модели для анализа на микроуровне
- •4.2. Методы анализа на микроуровне
- •4.3. Метод конечных элементов для анализа механической прочности
- •4.4. Моделирование аналоговых устройств на функциональном уровне
- •4.5. Математические модели дискретных устройств
- •4.6. Методы логического моделирования
- •4.7. Системы массового обслуживания
- •4.8. Аналитические модели смо
- •4.9. Уравнения Колмогорова
- •4.10. Пример аналитической модели
- •4.11. Модель многоканальной смо с отказами
- •4.12. Принципы имитационного моделирования
- •4.13. Событийный метод моделирования
- •4.14. Краткое описание языка gpss
- •1. Томашевский в., Жданова е. Имитационное моделирование в среде gpss. — м.: Бестселлер, 2003.
- •4.15. Сети Петри
- •1. В.Э.Малышкин. Основы параллельных вычислений. -2003 цит сгга, http://www.Ssga.Ru/metodich/paral1/contents.Html
- •4.16. Анализ сетей Петри
- •1. В.Э.Малышкин. Основы параллельных вычислений. -2003 цит сгга, http://www.Ssga.Ru/metodich/paral1/contents.Html Лекция 5. Геометрическое моделирование и машинная графика
- •5.1. Типы геометрических моделей
- •5.2. Методы и алгоритмы компьютерной графики
- •5.3. Программы компьютерной графики
- •5.4. Построение геометрических моделей
- •5.5. Поверхностные модели
- •1. Семенов а.Б. Программирование графических процессоров с использованием Direct3d и hlsl. -http://www.Intuit.Ru/department/graphics/direct3dhlsl/6/1.Html
- •5.7. Графический процессор
- •1. Пахомов с. Революция в мире графических процессоров // КомпьютерПресс, № 12, 2006.
- •5.8. Шейдеры
- •5.9. Геометрические шейдеры
- •5.10. Унифицированный графический процессор
- •1. Пахомов с. Революция в мире графических процессоров // КомпьютерПресс, № 12, 2006.
- •5.11. Примеры графических процессоров
- •Лекция 6. Математическое обеспечение синтеза проектных решений
- •6.1. Критерии оптимальности
- •6.2. Задачи оптимизации с учетом допусков
- •6.3. Классификация методов математического программирования
- •6.4. Методы одномерной оптимизации
- •6.5. Методы безусловной оптимизации
- •6.6. Подходы к решению задач структурного синтеза
- •6.7. Морфологические таблицы
- •6.8. Альтернативные графы
- •Лекция 7.
- •7.1. Интеллектуальные системы
- •7.2. Планирование процессов и распределение ресурсов
- •7.3. Методы локальной оптимизации и поиска с запретами
- •7.4. Методы распространения ограничений
- •7.5. Эволюционные методы
- •7.6. Простой генетический алгоритм
- •7.7. Кроссовер
- •7.8. Метод комбинирования эвристик
- •1. Норенков и.П. Эвристики и их комбинации в генетических методах дискретной оптимизации// Информационные технологии, 1999, № 1.
- •7.9. Примеры применения генетических методов
- •Лекция 8. Автоматизированные системы в промышленности
- •8.1. Системы erp
- •8.2. Стандарт mrp II
- •8.3. Логистические системы
- •8.4. Системы scm
- •8.6. Производственная исполнительная система mes
- •8.7. Автоматизированное управление технологическими процессами
- •8.8. Программирование для станков с чпу
- •8.9. Системы scada
- •8.10. Типовой маршрут проектирования в mcad
- •8.11. Типы сапр в области машиностроения
- •8.12. Основные функции cad-систем
- •8.13. Основные функции cae-систем
- •8.14. Основные функции cam-систем
- •8.15. Графическое ядро
- •Лекция 9.
- •9.1. Структура cad/cam систем
- •9.2. Машиностроительные сапр верхнего уровня
- •9.3. Маршруты проектирования сбис
- •9.4. Схемотехническое проектирование
- •9.5. Модели логических схем цифровой рэа.
- •9.6. Конструкторское проектирование сбис
- •9.7. Проектирование печатных плат
- •9.8. Назначение языка vhdl
- •Лекция10. Методическое и программное обеспечение автоматизированных систем
- •10.1. Типы case-систем
- •10.2. Спецификации проектов программных систем
- •10.3. Методика idef0
- •10.4. Методика idef3
- •10.5. Методика idef1x
- •10.7. Методика проектирования информационных систем на основе uml
- •10.8. Программное обеспечение case-систем
- •10.9. Интегрированные среды разработки приложений
- •Лекция 11. Технологии информационной поддержки этапов жизненного цикла изделий
- •11.1. Обзор cals-стандартов
- •11.2. Структура стандартов step
- •11.4. Интегрированная логистическая поддержка
- •11.5. Интерактивные электронные технические руководства
- •11.6. Стандарт aecma s1000d
- •11.7. Электронная цифровая подпись
- •11.8. Стандарты управления качеством промышленной продукции
- •Лекция 12. Технологии информационной поддержки этапов жизненного цикла изделий
- •12.1. Программное обеспечение cals-технологий
- •12.2. Язык html
- •12.3. Язык xml
- •12.5. Форматирование Web-страниц
- •12.6. Доступ к xml-документам
- •12.7. Мультиагентные системы
- •12.8. Технология soap
- •12.9. Компонентно-ориентированные технологии
10.9. Интегрированные среды разработки приложений
CASE-системы часто отождествляют с инструментальными средами разработки ПО, называемыми также интегрированными средами разработки программного обеспечения (IDE — Integrated development environment) или средами быстрой разработки приложений (RAD — Rapid Application Development). Обычно среда разработки включает в себя текстовый и графический редакторы, компилятор и/или интерпретатор, средства автоматизации сборки, отладки, документирования программ и управления версиями. Частный случай IDE — среды визуальной разработки, которые включают в себя возможность визуального редактирования интерфейса программы.
К числу IDE относят фабрики приложений, такие как Eclipse или Microsoft Visual Studio. Примеры других сред разработки — Sun Studio, Turbo Pascal, Borland C++, Borland Delphi, VB (Visual Basic), PowerBuilder. Применение инструментальных сред существенно сокращает объем ручной работы программистов, особенно при проектировании интерактивных частей программ.
Простейшие варианты инструментальных сред представлены наборами средств разработки программ, называемыми SDK (Software Development Kit). Обычно SDK распространяются бесплатно с целью расширения применения определенных технологий или платформ. Пример SDK - среда разработки драйверов устройств. В случае использования языка Java SDK называют JDK (Java Developer's Kit). В JDK имеются:
библиотеки классов, в том числе библиотеки основных элементов языка, часто используемых оболочек (wrapper), процедур ввода-вывода, компонентов оконного интерфейса и др.
инструментальные средства такие, как компилятор байт-кодов, интерпретатор, просмотрщик аплетов, отладчик, формирователь оконных форм и т.п.
В средах быстрой разработки приложений RAD обычно реализуется способ программирования, называемый управлением событиями. При этом достигается автоматическое создание каркасов программ, существенно сокращается объем ручного кодирования. В этих средах пользователь может работать одновременно с несколькими экранами (окнами). Типичными являются окна из следующего списка:
окно меню с пунктами "file", "edit", "window" и т.п., реализующими функции, очевидные из названия пунктов;
окно формы, на котором собственно и создается прототип экрана будущей прикладной программы;
палитра инструментов — набор изображений объектов пользовательского интерфейса, из которых можно компоновать содержимое окна формы;
окно свойств и событий, с помощью которого ставятся в соответствие друг другу объекты окна формы, события и обработчики событий. Событием в прикладной программе является нажатие клавиши или установка курсора мыши в объект формы. Каждому событию должна соответствовать событийная процедура (обработчик события), которая проверяет код клавиши и вызывает нужную реакцию. В RAD имеются средства для удобства разработки обработчиков событий;
окно редактора кода, в котором пользователь записывает создаваемую вручную часть кода;
окно проекта — список модулей и форм в создаваемой программе.
Для написания событийных процедур в Visual Basic используется язык и текстовый редактор одноименного языка, в Delphi — язык и редактор языка Object Pascal. Нужно заметить, что для реализации вычислительных процедур и, в частности, для написания миниспецификаций используется обычная для 3GL технология программирования.
Помимо упрощения написания пользовательского интерфейса, в средах RAD предусматриваются средства для реализации и ряда других функций. Так, в наиболее развитой версии Visual Basic к ним относятся средства выполнения следующих функций:
поддержка ODBC, что дает возможность работы с различными СУБД;
разработка баз данных;
разработка трехзвенных систем распределенных вычислений;
интерактивная отладка процедур на SQL Server;
управление версиями при групповой разработке ПО;
моделирование и анализ сценариев распределенных вычислений и др.
Платформенная инвариантность в Java достигается, благодаря введению виртуальной метамашины с системой команд, максимально приближенной к особенностям большинства машинных языков. Любой Web-сервер при наличии запроса на Java-программу со стороны клиента транслирует (компилирует) эту программу на язык метамашины. Скомпилированный модуль, называемый байт-кодом, пересылается клиенту. Клиент должен выполнить интерпретацию байт-кода. Соответствующие интерпретаторы в настоящее время имеются в браузерах всех основных разработчиков Web-технологий.
Хотя и ранее были известны технологии на базе промежуточных p-кодов, именно технология Java, оказалась наилучшим образом приспособленной для использования в гетерогенной сетевой среде. Она последовательно отражает принципы объектно-ориентированного программирования и обеспечивает приемлемую эффективность (производительность) исполнения программ. Эту эффективность можно еще более повысить, если в браузерах заменить интерпретацию на компиляцию.
Интегрированной средой разработки ПО на языке Java является J2EE.