
- •Глава 1. Введение в автоматизированное проектирование
- •1.1. Понятие проектирования
- •1.2. Принципы системного подхода
- •1.3. Уровни проектирования
- •1.4. Стадии проектирования
- •1.5. Модели и их параметры в сапр
- •1.6. Проектные процедуры
- •1.7. Жизненный цикл изделий
- •1.8. Структура сапр
- •1.9. Введение в cals-технологии
- •1.10. Этапы проектирования автоматизированных систем
- •Лекция 2. Техническое обеспечение сапр
- •2.1. Требования к техническому обеспечению сапр
- •2.2. Вычислительные системы для сапр
- •2.2.1. Процессоры эвм
- •2.2.2. Память эвм
- •2.2.3. Мониторы
- •2.2.4. Периферийные устройства
- •2.2.5. Шины компьютера
- •2.3. Типы вычислительных машин и систем
- •2.4. Персональный компьютер
- •2.5. Рабочие станции
- •2.6. Архитектуры серверов и суперкомпьютеров
- •2. В.Н. Дацюк, а.А. Букатов, а.И. Жегуло/ методическое пособие по курсу "Многопроцессорные системы и параллельное программирование". -http://rsusu1.Rnd.Runnet.Ru/tutor/method/m1/content.Html
- •2.7. Примеры серверов
- •2.8. Суперкомпьютеры XXI века
- •Лекция 3. Математическое обеспечение анализа проектных решений
- •3.1. Требования к математическим моделям и методам в сапр
- •3.2. Фазовые переменные, компонентные и топологические уравнения
- •3.3. Основные понятия теории графов
- •3.4. Представление топологических уравнений
- •3.5. Особенности эквивалентных схем механических объектов
- •3.6. Методы формирования математических моделей на макроуровне
- •3.7. Выбор методов анализа во временной области
- •3.8. Алгоритм численного интегрирования систем дифференциальных уравнений
- •3.9. Методы решения систем нелинейных алгебраических уравнений
- •3.10. Методы решения систем линейных алгебраических уравнений
- •1. Alglib User Guide. - http://alglib.Sources.Ru/linequations/general/lu.Php. - Проверено 15.12.2009. Лекция 4. Математическое обеспечение анализа проектных решений
- •4.1. Математические модели для анализа на микроуровне
- •4.2. Методы анализа на микроуровне
- •4.3. Метод конечных элементов для анализа механической прочности
- •4.4. Моделирование аналоговых устройств на функциональном уровне
- •4.5. Математические модели дискретных устройств
- •4.6. Методы логического моделирования
- •4.7. Системы массового обслуживания
- •4.8. Аналитические модели смо
- •4.9. Уравнения Колмогорова
- •4.10. Пример аналитической модели
- •4.11. Модель многоканальной смо с отказами
- •4.12. Принципы имитационного моделирования
- •4.13. Событийный метод моделирования
- •4.14. Краткое описание языка gpss
- •1. Томашевский в., Жданова е. Имитационное моделирование в среде gpss. — м.: Бестселлер, 2003.
- •4.15. Сети Петри
- •1. В.Э.Малышкин. Основы параллельных вычислений. -2003 цит сгга, http://www.Ssga.Ru/metodich/paral1/contents.Html
- •4.16. Анализ сетей Петри
- •1. В.Э.Малышкин. Основы параллельных вычислений. -2003 цит сгга, http://www.Ssga.Ru/metodich/paral1/contents.Html Лекция 5. Геометрическое моделирование и машинная графика
- •5.1. Типы геометрических моделей
- •5.2. Методы и алгоритмы компьютерной графики
- •5.3. Программы компьютерной графики
- •5.4. Построение геометрических моделей
- •5.5. Поверхностные модели
- •1. Семенов а.Б. Программирование графических процессоров с использованием Direct3d и hlsl. -http://www.Intuit.Ru/department/graphics/direct3dhlsl/6/1.Html
- •5.7. Графический процессор
- •1. Пахомов с. Революция в мире графических процессоров // КомпьютерПресс, № 12, 2006.
- •5.8. Шейдеры
- •5.9. Геометрические шейдеры
- •5.10. Унифицированный графический процессор
- •1. Пахомов с. Революция в мире графических процессоров // КомпьютерПресс, № 12, 2006.
- •5.11. Примеры графических процессоров
- •Лекция 6. Математическое обеспечение синтеза проектных решений
- •6.1. Критерии оптимальности
- •6.2. Задачи оптимизации с учетом допусков
- •6.3. Классификация методов математического программирования
- •6.4. Методы одномерной оптимизации
- •6.5. Методы безусловной оптимизации
- •6.6. Подходы к решению задач структурного синтеза
- •6.7. Морфологические таблицы
- •6.8. Альтернативные графы
- •Лекция 7.
- •7.1. Интеллектуальные системы
- •7.2. Планирование процессов и распределение ресурсов
- •7.3. Методы локальной оптимизации и поиска с запретами
- •7.4. Методы распространения ограничений
- •7.5. Эволюционные методы
- •7.6. Простой генетический алгоритм
- •7.7. Кроссовер
- •7.8. Метод комбинирования эвристик
- •1. Норенков и.П. Эвристики и их комбинации в генетических методах дискретной оптимизации// Информационные технологии, 1999, № 1.
- •7.9. Примеры применения генетических методов
- •Лекция 8. Автоматизированные системы в промышленности
- •8.1. Системы erp
- •8.2. Стандарт mrp II
- •8.3. Логистические системы
- •8.4. Системы scm
- •8.6. Производственная исполнительная система mes
- •8.7. Автоматизированное управление технологическими процессами
- •8.8. Программирование для станков с чпу
- •8.9. Системы scada
- •8.10. Типовой маршрут проектирования в mcad
- •8.11. Типы сапр в области машиностроения
- •8.12. Основные функции cad-систем
- •8.13. Основные функции cae-систем
- •8.14. Основные функции cam-систем
- •8.15. Графическое ядро
- •Лекция 9.
- •9.1. Структура cad/cam систем
- •9.2. Машиностроительные сапр верхнего уровня
- •9.3. Маршруты проектирования сбис
- •9.4. Схемотехническое проектирование
- •9.5. Модели логических схем цифровой рэа.
- •9.6. Конструкторское проектирование сбис
- •9.7. Проектирование печатных плат
- •9.8. Назначение языка vhdl
- •Лекция10. Методическое и программное обеспечение автоматизированных систем
- •10.1. Типы case-систем
- •10.2. Спецификации проектов программных систем
- •10.3. Методика idef0
- •10.4. Методика idef3
- •10.5. Методика idef1x
- •10.7. Методика проектирования информационных систем на основе uml
- •10.8. Программное обеспечение case-систем
- •10.9. Интегрированные среды разработки приложений
- •Лекция 11. Технологии информационной поддержки этапов жизненного цикла изделий
- •11.1. Обзор cals-стандартов
- •11.2. Структура стандартов step
- •11.4. Интегрированная логистическая поддержка
- •11.5. Интерактивные электронные технические руководства
- •11.6. Стандарт aecma s1000d
- •11.7. Электронная цифровая подпись
- •11.8. Стандарты управления качеством промышленной продукции
- •Лекция 12. Технологии информационной поддержки этапов жизненного цикла изделий
- •12.1. Программное обеспечение cals-технологий
- •12.2. Язык html
- •12.3. Язык xml
- •12.5. Форматирование Web-страниц
- •12.6. Доступ к xml-документам
- •12.7. Мультиагентные системы
- •12.8. Технология soap
- •12.9. Компонентно-ориентированные технологии
1.8. Структура сапр
Как и любая сложная система, САПР состоит из подсистем. Различают подсистемы проектирующие и обслуживающие.
Проектирующие подсистемы непосредственно выполняют проектные процедуры. Примерами проектирующих подсистем могут служить подсистемы геометрического трехмерного моделирования механических объектов, изготовления конструкторской документации, схемотехнического анализа, трассировки соединений в печатных платах.
Обслуживающие подсистемы обеспечивают функционирование проектирующих подсистем, их совокупность часто называют системной средой (или оболочкой) САПР. Типичными обслуживающими подсистемами являются подсистемы управления проектными данными, подсистемы разработки и сопровождения программного обеспечения CASE (Computer Aided Software Engineering), обучающие подсистемы для освоения пользователями технологий, реализованных в САПР.
Структурирование САПР по различным аспектам обусловливает появление видов обеспечения САПР. Принято выделять семь видов обеспечения:
техническое обеспечение (ТО), включающее различные аппаратные средства (ЭВМ, периферийные устройства, сетевое коммутационное оборудование, линии связи, измерительные средства);
математическое обеспечение (МО), объединяющее математические методы, модели и алгоритмы для выполнения проектирования;
программное обеспечение (ПО), представляемое компьютерными программами САПР;
информационное обеспечение (ИО), состоящее из баз данных (БД), систем управления базами данных (СУБД), а также включающее другие данные, используемые при проектировании;
лингвистическое обеспечение (ЛО), выражаемое языками общения между проектировщиками и ЭВМ, языками программирования и языками обмена данными между техническими средствами САПР;
методическое обеспечение (МетО), включающее различные методики проектирования, иногда к МетО относят также математическое обеспечение;
организационное обеспечение (ОО), представляемое штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.
Отметим, что вся совокупность используемых при проектировании данных называется информационным фондом САПР. Базой данных называют упорядоченную совокупность данных, отображающих свойства объектов и их взаимосвязи в некоторой предметной области. Доступ к БД для чтения, записи и модификации данных осуществляется с помощью СУБД, а совокупность БД и СУБД называют банком данных (БнД).
Классификацию САПР осуществляют по ряду признаков, например, по приложению, целевому назначению, масштабам (комплексности решаемых задач), характеру базовой подсистемы — ядра САПР.
По приложениям наиболее представительными и широко используемыми являются следующие группы САПР.
САПР для применения в отраслях общего машиностроения. Их часто называют машиностроительными САПР или MCAD (Mechanical CAD) системами.
САПР в области радиоэлектроники: системы ECAD (Electronic CAD) или EDA (Electronic Design Automation).
САПР в области архитектуры и строительства.
Кроме того, известно большое число специализированных САПР, или выделяемых в указанных группах, или представляющих самостоятельную ветвь в классификации. Примерами таких систем являются САПР больших интегральных схем (БИС); САПР летательных аппаратов; САПР электрических машин и т.п.
По целевому назначению различают САПР или подсистемы САПР, обеспечивающие разные аспекты (страты) проектирования. Так, в составе MCAD появляются CAE/CAD/CAM системы.
По масштабам различают отдельные программно-методические комплексы (ПМК) САПР, например, комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ) или комплекс анализа электронных схем; системы ПМК; системы с уникальными архитектурами не только программного (software), но и технического (hardware) обеспечений.
По характеру базовой подсистемы различают следующие разновидности САПР.
САПР на базе подсистемы машинной графики и геометрического моделирования. Эти САПР ориентированы на приложения, где основной процедурой проектирования является конструирование, т.е. определение пространственных форм и взаимного расположения объектов. Поэтому к этой группе систем относится большинство САПР в области машиностроения, построенных на базе графических ядер. В настоящее время широко используются унифицированные графические ядра, применяемые более чем в одной САПР, это ядра Parasolid фирмы EDS Unigraphics и ACIS фирмы Intergraph.
САПР на базе СУБД. Они ориентированы на приложения, в которых при сравнительно несложных математических расчетах перерабатывается большой объем данных. Такие САПР преимущественно встречаются в технико-экономических приложениях, например, при проектировании бизнес-планов, но имеют место также при проектировании объектов, подобных щитам управления в системах автоматики.
САПР на базе конкретного прикладного пакета. Фактически это автономно используемые программно-методические комплексы, например, имитационного моделирования производственных процессов, расчета прочности по методу конечных элементов, синтеза и анализа систем автоматического управления и т.п. Часто такие САПР относят к системам CAE. Примерами могут служить программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.
Комплексные (интегрированные) САПР, состоящие из совокупности подсистем предыдущих видов. Характерными примерами комплексных САПР являются CAE/CAD/CAM-системы в машиностроении или САПР БИС. Так, САПР БИС включает в себя СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий. Для управления столь сложными системами применяют специализированные системные среды.