- •Введение
- •1 Анализ основных типов мэ и способов их применения
- •1.1 Типы межсетевых экранов
- •1.1.1 Фильтры пакетов
- •1.1.2 Фильтры пакетов с контекстной проверкой
- •1.1.3 Сервер уровня соединения
- •1.1.4 Серверы прикладного уровня
- •1.2 Способы применения межсетевых экранов
- •1.Стандартные схемы защиты отдельной локальной сети.
- •1.2.1 Стандартные схемы защиты отдельной локальной сети
- •1.2.2 Применение в составе средств коллективной защиты
- •1.3 Персональные межсетевые экраны
- •1.4 Обобщенная концепция применения межсетевых экранов
- •1.5 Обзор персональных межсетевых экранов, доступных на рынке
- •2 Классификация уязвимостей сетевых экранов, создающих предпосылки их компрометации
- •2.1 Уязвимости сетевых протоколов
- •2.1.1 Снифферы пакетов
- •2.1.2 Уязвимость маршрутизации от источника
- •2.1.4 Атаки типа “отказ в обслуживании”
- •2.1.5 Атаки syn flood
- •2.1.6 Атака Smurf
- •2.1.7 Атака Tribe Flood Network
- •2.1.8 Атака WinFreeze.
- •2.1.9 Атака Loki.
- •2.1.10 Arp атаки
- •2.1.11 Фрагментация
- •2.2 Уязвимости операционных систем
- •2.2.1 Получение прав другого пользователя
- •2.2.2 Нелегальное подключение к системе
- •2.2.3 Человеческий фактор
- •2.2.4 Совместимость с другими операционными системами
- •2.2.5 Парольные атаки
- •2.2.6 Вирусы и приложения типа "троянский конь"
- •2.3 Уязвимости программной реализации сетевых экранов
- •2.3.1 Атаки через туннели в межсетевом экране
- •2.3.2 Атаки вследствие неправильной конфигурации межсетевого экрана
- •2.3.3 Атаки осуществляемые в обход межсетевого экрана
- •2.3.4 Атаки осуществляемые из доверенных узлов и сетей
- •2.3.5 Атаки путем подмены адреса источника
- •2.3.6 Атаки на сам межсетевой экран
- •2.3.7 Атаки на подсистему аутентификации межсетевого экрана
- •2.4 Выводы
- •3 Исследование архитектуры и функционирования мэ на примере предложенного по
- •3.1 Исследование механизмов взаимодействия средств сетевой безопасности с операционной системой
- •3.1.1 Подходы к организации фильтрования трафика в ос Windows
- •3.3 Выводы
- •4 Разработка алгоритмов для проверки уязвимостей средств сетевой безопасности
- •4.1 Обобщённый алгоритм воздействия на средства сетевой безопасности
- •4.3.2.1 Инвентаризация Windows nt/2000/xp
- •4.3.2.3 Инвентаризация unix
- •4.3.3 Проникновение в сеть и захват контроля над хостом
- •4.3.3.1 Взлом хоста с ос Windows
- •4.3.3.2 Взлом хоста с ос Unix
- •4.4 Разработка алгоритмов воздействия на средства сетевой защиты изнутри защищенной сети
- •4.4.1 «Инъекции» кода
- •4.4.2 Использование виртуальной машины
- •4.4.3 Использование уязвимостей ActiveX
- •4.5 Разработка алгоритмов, основанных на уязвимостях механизма взаимодействия средств сетевой безопасности с операционной системой
- •4.6 Разработка алгоритмов установления соединения с компьютером, защищенным межсетевым экраном, персональным сетевым экраном и несколькими сетевыми экранами
- •4.6.1 Http-тунелирование
- •4.6.2 Icmp-тунелирование
- •4.6.4 Pcap-тунелирование
- •4.7 Выводы
2 Классификация уязвимостей сетевых экранов, создающих предпосылки их компрометации
Далее рассматриваются угрозы безопасности МЭ при использовании различных типов уязвимостей. Перечень событий, характеризующих процессы подготовки и реализации злоумышленником каких-либо угроз безопасности посредством эксплуатации идентифицированных уязвимостей, рассматривается как атака на межсетевой экран, приводящая к его компрометации.
2.1 Уязвимости сетевых протоколов
TCP/IP и другие связанные с ним протоколы разработаны достаточно давно, когда проблемы безопасности в Internet были минимальными по сравнению с сегодняшними. Поэтому при написании большей части из этих протоколов и утилит безопасности не уделялось особого внимания. Они в первую очередь разрабатывались как функциональные и легко переносимые. Это помогло TCP/IP распространяться на множество компьютерных платформ, и сегодня данный набор протоколов используется в Internet.
2.1.1 Снифферы пакетов
Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки) [2]. При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен. В настоящее время снифферы работают в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако ввиду того, что некоторые сетевые приложения передают данные в текстовом формате (telnet, FTP, SMTP, POP3 и т.д.), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).
Перехват имен и паролей создает большую опасность, так как пользователи часто применяют один и тот же логин и пароль для множества приложений и систем. Многие пользователи вообще имеют один пароль для доступа ко всем ресурсам и приложениям. Если приложение работает в режиме клиент/сервер, а аутентификационные данные передаются по сети в читаемом текстовом формате, эту информацию с большой вероятностью можно использовать для доступа к другим корпоративным или внешним ресурсам.
2.1.2 Уязвимость маршрутизации от источника
Протокол IP не создает соединения и не обеспечивает проверку доставки пакетов. В протоколе IP реализован только механизм адресации отправителя и получателя в IP заголовке пакета. Выбор маршрута передачи пакета реализуется в других протоколах.
Для задания маршрута пакета служит поле Options. Такая маршрутизация, называется маршрутизацией от источника (source routing), была разработана для диагностики ошибок в сети и других подобных применений. Существует возможность эксплуатировать эту особенность для передачи внешнего пакета с фиктивным IP-адресом, который кажется пришедшим из локальной сети. При этом доставка пакета осуществляется посредством маршрутизации от источника.
2.1.3 IP-спуфинг
IP-спуфинг происходит, когда злоумышленник, находящийся внутри корпорации или вне ее выдает себя за санкционированного пользователя. Это можно сделать двумя способами. Во-первых, злоумышленник может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример - атака DoS, которая начинается с чужого адреса, скрывающего истинную личность злоумышленника.
Обычно IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами. Для двусторонней связи злоумышленник должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые злоумышленник, однако, даже не пытаются получить ответ от приложений. Если главная задача состоит в получении от системы важного файла, ответы приложений не имеют значения.
