- •Введение
- •1 Анализ основных типов мэ и способов их применения
- •1.1 Типы межсетевых экранов
- •1.1.1 Фильтры пакетов
- •1.1.2 Фильтры пакетов с контекстной проверкой
- •1.1.3 Сервер уровня соединения
- •1.1.4 Серверы прикладного уровня
- •1.2 Способы применения межсетевых экранов
- •1.Стандартные схемы защиты отдельной локальной сети.
- •1.2.1 Стандартные схемы защиты отдельной локальной сети
- •1.2.2 Применение в составе средств коллективной защиты
- •1.3 Персональные межсетевые экраны
- •1.4 Обобщенная концепция применения межсетевых экранов
- •1.5 Обзор персональных межсетевых экранов, доступных на рынке
- •2 Классификация уязвимостей сетевых экранов, создающих предпосылки их компрометации
- •2.1 Уязвимости сетевых протоколов
- •2.1.1 Снифферы пакетов
- •2.1.2 Уязвимость маршрутизации от источника
- •2.1.4 Атаки типа “отказ в обслуживании”
- •2.1.5 Атаки syn flood
- •2.1.6 Атака Smurf
- •2.1.7 Атака Tribe Flood Network
- •2.1.8 Атака WinFreeze.
- •2.1.9 Атака Loki.
- •2.1.10 Arp атаки
- •2.1.11 Фрагментация
- •2.2 Уязвимости операционных систем
- •2.2.1 Получение прав другого пользователя
- •2.2.2 Нелегальное подключение к системе
- •2.2.3 Человеческий фактор
- •2.2.4 Совместимость с другими операционными системами
- •2.2.5 Парольные атаки
- •2.2.6 Вирусы и приложения типа "троянский конь"
- •2.3 Уязвимости программной реализации сетевых экранов
- •2.3.1 Атаки через туннели в межсетевом экране
- •2.3.2 Атаки вследствие неправильной конфигурации межсетевого экрана
- •2.3.3 Атаки осуществляемые в обход межсетевого экрана
- •2.3.4 Атаки осуществляемые из доверенных узлов и сетей
- •2.3.5 Атаки путем подмены адреса источника
- •2.3.6 Атаки на сам межсетевой экран
- •2.3.7 Атаки на подсистему аутентификации межсетевого экрана
- •2.4 Выводы
- •3 Исследование архитектуры и функционирования мэ на примере предложенного по
- •3.1 Исследование механизмов взаимодействия средств сетевой безопасности с операционной системой
- •3.1.1 Подходы к организации фильтрования трафика в ос Windows
- •3.3 Выводы
- •4 Разработка алгоритмов для проверки уязвимостей средств сетевой безопасности
- •4.1 Обобщённый алгоритм воздействия на средства сетевой безопасности
- •4.3.2.1 Инвентаризация Windows nt/2000/xp
- •4.3.2.3 Инвентаризация unix
- •4.3.3 Проникновение в сеть и захват контроля над хостом
- •4.3.3.1 Взлом хоста с ос Windows
- •4.3.3.2 Взлом хоста с ос Unix
- •4.4 Разработка алгоритмов воздействия на средства сетевой защиты изнутри защищенной сети
- •4.4.1 «Инъекции» кода
- •4.4.2 Использование виртуальной машины
- •4.4.3 Использование уязвимостей ActiveX
- •4.5 Разработка алгоритмов, основанных на уязвимостях механизма взаимодействия средств сетевой безопасности с операционной системой
- •4.6 Разработка алгоритмов установления соединения с компьютером, защищенным межсетевым экраном, персональным сетевым экраном и несколькими сетевыми экранами
- •4.6.1 Http-тунелирование
- •4.6.2 Icmp-тунелирование
- •4.6.4 Pcap-тунелирование
- •4.7 Выводы
2.2.3 Человеческий фактор
Ошибки администрирования, которые были неизбежны в UNIX, в Windows NT, может быть, сделать и сложнее, но существует особенность: пусть администратор знает, что ему нужно сделать, но не может – закрытость Windows NT не предоставляет ему таких гибких механизмов настройки, как UNIX.
2.2.4 Совместимость с другими операционными системами
Практически всегда требования совместимости или переносимости противоречат требованиям безопасности. Несмотря на то что для Windows NT была разработана специальная хэш-функция, она вынуждена поддерживать еще одну, которая берет свое начало от самых первых сетевых приложений Microsoft. Поэтому в криптографическом плане Windows NT часто оказывается слабее UNIX. Достаточно часто Windows NT приходится поддерживать решения, которые являются устаревшими с точки зрения безопасности.
2.2.5 Парольные атаки
Злоумышленники могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль часто можно получить при помощи IP-спуфинга и снифинга пакетов, злоумышленники часто пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack). Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате злоумышленник получает доступ к ресурсам, он получает его на правах обычного пользователя, пароль которого был подобран. Если этот пользователь имеет значительные привилегии доступа, злоумышленник может создать для себя "проход" для будущего доступа, который будет действовать даже если пользователь изменит свой пароль и логин.
2.2.6 Вирусы и приложения типа "троянский конь"
Рабочие станции конечных пользователей очень уязвимы для вирусов и троянских коней. Вирусами называются вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. В качестве примера можно привести вирус, который прописывается в файле command.com (главном интерпретаторе систем Windows) и стирает другие файлы, а также заражает все другие найденные им версии command.com. "Троянский конь" - это не программная вставка, а настоящая программа, которая выглядит как полезное приложение, а на деле выполняет вредную роль. Примером типичного "троянского коня" является программа, которая выглядит, как простая игра для рабочей станции пользователя. Однако пока пользователь играет в игру, программа отправляет свою копию по электронной почте каждому абоненту, занесенному в адресную книгу этого пользователя. Все абоненты получают по почте игру, вызывая ее дальнейшее распространение.
Рис. 2.1 – Дерево уязвимостей ОС семейства Windows NT
2.3 Уязвимости программной реализации сетевых экранов
2.3.1 Атаки через туннели в межсетевом экране
Просмотр трафика на границе между внешней и внутренней сетями не гарантирует полной защиты. Межсетевой экран фильтрует трафик и принимает решения о пропуске или блокировании сетевых пакетов, опираясь на информацию об используемом протоколе [2]. Чаще всего, правила предусматривают соответствующую проверку с целью определения того, разрешен или нет конкретный протокол. Например, если на МЭ разрешен 25 и 80 порты, то тем самым разрешается пропуск во внутреннюю сеть почтового (SMTP) и Web (HTTP) трафика. Именно этот принцип обработки и используется квалифицированными злоумышленниками. Вся несанкционированная деятельность осуществляется в рамках разрешенного протокола, создавая тем самым в нем туннель, по которому злоумышленник и реализует атаку. Самый простой пример, демонстрирующий применение туннелей - Internet-черви и макровирусы, заносимые в корпоративную сеть в виде вложений (attachments) в сообщения электронной почты. Если межсетевой экран разрешает прохождение SMTP-трафика, то во внутреннюю сеть может попасть и "вирусная инфекция". Более сложным примером может служить например, Web-сервер, функционирующий под управлением программного обеспечения компании Microsoft (Internet Information Server), защищается межсетевым экраном, на котором разрешен только 80-ый порт. На первый взгляд обеспечивается полная защита. Но только на первый взгляд. Если используется IIS версии 3.0, то обращение по адресу: http://www.domain.ru/default.asp. (с точкой в конце) позволяет злоумышленнику получить доступ к содержимому ASP-файла, который может хранить конфиденциальные данные (например, пароль доступа к базе данных). В системе обнаружения атак RealSecure эта атака получила название "HTTP IIS 3.0 Asp Dot". И даже, если установлена самая последняя версия IIS 5.0, то и в этом случае нельзя говорить о полной безопасности. Обращение к адресу:
http://SOMEHOST/scripts/georgi.bat/..%C1%9C..%C1%9C..%C1%9Cwinnt/system32/cmd.exe?/c%20dir%20C:\
приводит к выполнению команды "dir C:\". Аналогичным образом можно прочитать любой файл, в том числе и содержащий конфиденциальную информацию:
http://SOMEHOST/scripts/georgi.asp/..%C1%9C..%C1%9C..%C1%9Ctest.txt
Последним примером может служить атака Loki, которая позволяет туннелировать различные команды (например, запрос на передачу файла паролей /etc/passwd) в запросы ICMP Echo Request и реакцию на них в ответы ICMP Echo Reply.
