
- •Технічна механіка Конспект лекцій для студентів спеціальності
- •Передмова
- •Розділ 1. Загальні принципи проектування машин та їхніх елементів. Механічний привод
- •Глава 1. Класифікація деталей, критерії
- •1.1. Основні терміни та поняття
- •1.2. Загальна класифікація деталей машин
- •1.3. Роботоздатність та її основні критерії
- •1.4. Розрахунки при проектуванні та конструюванні
- •Глава 2. Машинобудівні матеріали та
- •2.1. Короткі відомості про матеріали
- •2.2. Вибір матеріалу деталі
- •Глава 3. Механічний привод. Механічні передачі
- •3.1. Структура машин та їхній привод (призначення,
- •3.2. Призначення і класифікація механічних передач
- •3.3. Основні кінематичні та силові співвідношення
- •3.4. Основи вибору механічних передач
- •Розділ 2. Зубчасті передачі. Черв’ячні передачі. Редуктори
- •Глава 4. Циліндричні та конічні зубчасті передачі
- •4.1. Загальні відомості, класифікація, геометричні та кінематичні
- •4.2. Види руйнування зубців, критерії їх роботоздатності та
- •4.3. Конічні зубчасті передачі
- •Глава 5. Черв’ячні передачі
- •5.1. Загальні відомості
- •5.2. Кінематика, силові співвідношення та причини відмов
- •5.3. Матеріали черв’ячних передач
- •5.4. Основні критерії роботоздатності і розрахунку
- •Глава 6. Редуктори
- •6.1. Загальні відомості та основні параметри редукторів і
- •6.2. Елементи конструкцій редукторів
- •Розділ 3. Вали та осі. Опори валів та осей. З’єднання типу “вал – маточина”. Муфти для з’єднання валів
- •Глава 7. Вали та осі
- •7.1. Загальні відомості. Класифікація. Матеріали
- •7.2. Навантаги на вали і осі та їхні розрахункові моделі
- •7.3. Розрахунки валів та осей
- •Глава 8. Вальниці
- •8.1. Вальниці ковзання. Загальні відомості
- •8.2. Критерії роботоздатності та розрахунок вальниць ковзання
- •8.3. Вальниці котіння. Загальні відомості, класифікація і система
- •8.4. Критерії роботоздатності та підбір вальниць котіння
- •Глава 9. З’єднання типу “вал – маточина”
- •9.1. Шпонкові (плішкові) з’єднання
- •Р ис. 9.2. Конструкції шпонок
- •9.2. Шліцьові (зубчасті) з’єднання
- •9.3. З’єднання деталей гарантованим натягом
- •Глава 10. Муфти
- •10.1. Загальні відомості, призначення та класифікація
- •10.2. Класи некерованих, керованих, самокерованих і
- •Розділ 4. Передачі гвинт – мутра (гайка). Фрикційні передачі та варіатори. Пасові та ланцюгові передачі
- •Глава 11. Передачі гвинт – мутра (гайка)
- •11.1. Загальні відомості та класифікація
- •11.2. Силові співвідношення у гвинтовій парі
- •11.3. Розрахунок різі на міцність
- •11.4. Кінематичний та силовий розрахунки
- •Глава 12. Фрикційні передачі та варіатори
- •12.1. Загальні відомості та класифікація
- •12.2. Основні фактори, які визначають якість фрикційної передачі
- •12.3. Варіатори та їхні основні параметри
- •Глава 13. Пасові передачі
- •13.1. Класифікація та основні характеристики
- •13.2. Механіка пасової передачі
- •13.3. Основи розрахунку пасових передач
- •Глава 14. Ланцюгові передачі
- •14.1. Класифікація та основні характеристики
- •14.2. Геометричні, кінематичні, силові та динамічні параметри
- •14.3. Критерії роботоздатності та розрахунок
- •Розділ 5. З’єднання деталей машин: зварні та різеві
- •Глава 15. З’єднання зварюванням
- •15.1. Загальні відомості, класифікація та області застосування
- •15.2. Розрахунок зварних з’єднань
- •Глава 16. З’єднання різзю
- •16.1. Загальні відомості
- •16.2. Розрахунок на міцність витків різі
- •16.3. Кріпильні деталі та типи з’єднань
- •16.4. Розрахунок на міцність стрижня болта
- •Деталей машин
- •Глава 17. Пружини
- •17.1. Загальні відомості, призначення та класифікація пружин
- •17.2. Матеріали пружин
- •Глава 18. Поняття про оптимальне та
- •18.1. Поняття про оптимальне проектування
- •18.2. Елементи оптимізації при проектуванні приводів машин
- •Список літератури
- •Технічна механіка Конспект лекцій для студентів спеціальності
- •6.090603 “Електротехнічні системи електроспоживання”
- •Енергоощадного факультету та заочного відділу
- •Напряму 6.090600 “Електротехніка”
- •Усіх форм навчання
- •Укладачі: д.М. Коновалюк
- •43018, М. Луцьк, вул. Львівська, 75.
8.4. Критерії роботоздатності та підбір вальниць котіння
за динамічною і статичною вантажностями
Основні причини втрати роботоздатності вальницями котіння. Це втомне руйнування робочих поверхонь тіл котіння та бігових доріжок кілець внаслідок циклічного контактного навантаження; цей основний вид пошкоджень вальниць спостерігається після тривалої роботи і супроводжується підвищенням шуму та вібрації; з досвіду експлуатації встановлено, що найчастіше пошкоджується бігова доріжка внутрішнього кільця.
Спостерігаються пластичні деформації у вигляді вм’ятин, ямок на доріжках котіння. Особливо у важконавантажених тихохідних вальницях при дії великих навантаг без обертання або ударних навантаг.
Має місце абразивне спрацьовування як результат недостатнього захисту від абразивних часток (пилу та бруду), яке є основною причиною виходу з ладу вальниць авт, тракторів, будівельних та гірничих машин і т. ін.; застосування досконалих конструкцій ущільнювачів вальницевих вузлів значно зменшує спрацювання.
Можуть бути задúрки робочих поверхонь як результат недостатнього змащення, дуже малих проміжків через неправильний монтаж, а ще – розколювання кілець і тіл котіння через перекоси при монтажі або при великих динамічних навантагах (при нормальній експлуатації цей вид руйнувань не спостерігається).
У швидкохідних вальницях можуть бути руйнування сепараторів від дії відцентрових сил і тиску тіл котіння на них через значний розкид діаметрів тіл котіння в одній вальниці.
Критерії роботоздатності і розрахунок вальниць котіння. Сучасний розрахунок вальниць ґрунтується тільки на двох критеріях:
1) розрахунок на статичну вантажність за залишковими деформаціями;
2) розрахунок на ресурс (довговічність) за втомним викришуванням. Розрахунки за іншими критеріями не розроблені, оскільки ці критерії пов’язані з низкою випадкових факторів, які важко піддаються обліку.
Стандартом обмежені кількість типів та розмірів вальниць. Це дозволило розрахувати і експериментально встановити вантажність (роботоздатність) кожного типорозміра вальниць.
Проектуючи машини, вузли і аґреґати, вальниці котіння не конструюють і не розраховують, а підбирають з числа стандартних за умовними формулами. Методика підбору стандартних вальниць також стандартизована і відповідає в основному вимогам міжнародної організації зі стандартизації (ISO).
Підбір вальниць котіння за динамічною та статичною вантажністю. Розрізняють підбір вальниць за динамічною вантажністю для попередження втомного руйнування (викришування) і статичною вантажністю для попередження залишкових деформацій, які базуються відповідно на міждержавних стандартах – ГОСТ 18855 “Вальниці котіння. Розрахунок динамічної вантажності, еквівалентної динамічної навантаги довговічності” та ГОСТ 18854 “Вальниці котіння. Розрахунок статичної вантажності та еквівалентної статичної навантаги”.
Підбір вальниць котіння за динамічною вантажністю С (за даним ресурсом або довговічністю) здійснюють при частоті обертання n ≥ 10 хв-1. При n від 1 до 10 хв-1 в розрахунку приймають n=10 хв-1.
Заувага. Фірма SKF (Швеція) розрахунок за динамічною вантажністю проводить при n > 20хв-1.
Умова підбору:
С (потрібна) ≤ С (паспортна або з каталогу),
або
Спот ≤ Скат. (8.5)
Паспортна динамічна вантажність С – це така стала навантага, яку вальниця може витримати на протязі 1 млн. обертів без появи ознак втомленості не менше ніж у 90% з певної кількості вальниць, що піддаються випробуванням. Значення С наведені в каталогах.
Під навантагою розуміють радіальну для радіальних та радіально-упорних вальниць (із зовнішнім кільцем, що не обертається), вісеву для упорних та упорно-радіальних (при обертанні одного з кілець).
Динамічна вантажність та ресурс пов’язані емпіричною залежністю
L
= a1a2(C/Fe)p
або
,
(8.6)
де L – ресурс, млн.обертів; Fe – еквівалентна навантага (про це йтиметься нижче); p = 3 для кулькових і p =10/3=3,33... для роликових вальниць; а1– коефіцієнт надійності; а2 – узагальнений коефіцієнт сумісного впливу якості металу та умов експлуатації. В каталогах та довідниках вказані значення С з коефіцієнтом надійності S = 0,9.
При малих ресурсах обмежують Fe<0,5 С, інакше можливе невтомне руйнування.
Еквівалентні динамічні навантаги. Еквівалентна динамічна навантага Fe для радіальних та радіально-упорних вальниць є така умовна стала радіальна навантага Fr, яка, якщо прикласти її до вальниці з внутрішнім кільцем, що обертається, та з нерухомим зовнішнім, забезпечує таку ж довговічність, яку вальниця має при дійсних умовах навантаження та обертання.
Перевірка і підбір вальниць за статичною вантажністю. Навантага Fe зростає зі зменшенням ресурсу L і теоретично не має обмеження. Практично навантага обмежена втратою статичної тривкості, або так званою статичною вантажністю.
Статичну вантажність викориcтовують для підбору вальниць при малих частотах обертання n < 1 хв-1, коли число циклів навантаг мале і не викликає втомних руйнувань, а також для перевірки вальниць, що розраховані за динамічною вантажністю. Умова перевірки і відбору
F0 ≤ С0, (8.7)
де F0 – еквівалентна статична навантага; С0 – статична вантажність.
Заувага. Фірма SKF розрахунок за статичною вантажністю рекомендує при n < 20 хв-1.
Під статичною вантажністю розуміють таку статичну навантагу, якій відповідає загальна залишкова деформація тіл котіння та кілець в найбільш навантаженій точці контакту, що рівна 0,0001 діаметра тіла котіння. При цьому під навантагою розуміють радіальну для радіальних і радіально-упорних вальниць, вісеву для упорних і упорно-радіальних. Значення С0 вказані в каталогах для кожного типорозміру вальниці.
Еквівалентна статична навантага
Р0 = Х0Fr + Y0Fa, (8.8)
де Fr i Fa – радіальна і вісева навантаги; Х0 та Y0 – коефіцієнти радіальної та вісевої статичних навантаг.
Наприклад:
а) Х0 = 0,6 і Y0 =0,5 – для радіальних кулькових однорядних (дворядних) вальниць;
б) Х0
= 0,5 і Y0
= 0,47...0,28 (при
= 12...360 відповідно) – для
радіально-упорних кулькових вальниць;
в) Х0 = 0,5 і Y0 = 0,22ctg – для конічних та самоустановних кулькових та роликових вальниць.
Гранична швидкохідність вальниці. Обмежуються вальниці граничною частотою nгр , яка вказується в каталозі. Це найбільша частота обертання, за межами якої розрахункова довговічність не ґарантується. Дослідами встановлено, що інтенсивність спрацювання і втрати на тертя у вальницях котіння пов’язані з коловою швидкістю, тому для оцінки граничної швидкохідності прийнятні умовні швидкісні параметри (пропорціональні коловій швидкості)
[Dmn] = const, (8.9)
де Dm – діаметр обводу центрів тіл котіння, мм; n – частота обертання, хв-1.
Допустиме значення [Dmn] залежить від конструктивних та експлуатаційних параметрів і типу вальниці, типу сепаратора, класу точності, типу мастила та ін.