Свойства группы.

1°. В группе G нейтральный элемент и симметричный элемент.

Доказательство следует из теорем 1 и 2.

2°. Для уравнения имеют единственное решение:

, .

Доказательство. Покажем, что – решение уравнения . Имеем: , т.е. − решение.

Если z – другое решение, то после умножения слева на x – единственное решение. Аналогично для другого уравнения.

3°. Закон сокращения в группе. Если .

Доказательство следует из свойства 2°.

Важный пример (группа перестановок степени ).

Пусть ­­− произвольное множество из элементов; например,

Определение 8. Перестановкой степени называется взаимнооднозначное отображение множества в .

Множество всех перестановок степени обозначается . Каждую перестановку будем в дальнейшем обозначать строчной буквой греческого алфавита: Перестановка изображается двурядным символом:

.

Такой символ обозначает отображение

Лемма 1. Число различных перестановок степени равно

Доказательство. В качестве первого элемента можно выбрать любой из элементов, в качестве второго − любой из оставшихся элементов, и т.д. Всего различных возможностей выбора Таким образом,

На множестве перестановок вводится операция умножения по формуле

Например, если

то

Лемма 2. Множество образует группу, не являющуюся коммутативной.

Доказательство. Вначале проверим ассоциативность умножения. Пусть и Тогда по определению легко проверить выполнение равенства Тождественная перестановка является нейтральным элементом в рассматриваемом множестве, симметричный элемент получается перестановкой строк. Некоммутативность легко проверяется на предыдущем примере.■

Замечание. Если и − коммутативная операция, то таблица Кэли симметрична относительно диагонали.

3°.Кольцо, свойства кольца.

В алгебре изучаются множества и с несколькими, например, с двумя, алгебраическими операциями.

Определение 9. Непустое множество называется кольцом и обозначается , если выполняются условия:

1) (K;+) – абелева группа.

2) умножение ассоциативно, т.е.

3) умножение дистрибутивно относительно сложения, т.е.

, .

Кольцо называется коммутативным (понятия абелева кольца нет!!!), если умножение коммутативно. Если относительно умножения существует нейтральный элемент, то кольцо называется кольцом с единицей.

Примеры колец.

  1. образуют коммутативное кольцо с единицей относительно обычных операций сложения и умножения.

  2. Множество {0}, содержащее лишь одно число 0, образует кольцо, называемое нулевым кольцом.

  3. Множество непрерывных на отрезке функций с операциями + и , определенными следующим образом:

, ,

образует коммутативное кольцо с единицей.

  1. Множество V3 всех векторов пространства относительно операций сложения векторов и векторного произведения векторов, образует кольцо.

  2. Рассмотрим пространство битовых строк (последовательностей длины , состоящих из нулей и единиц), относительно операций (исключающее «или») и (логическое умножение), которые задаются таблицами:

0

1

0

0

0

1

0

1

0

1

0

0

1

1

1

0


Например, (1010) (0110)=(1100); (1010) (0110)=(0010).

Операции и − алгебраические, нейтральный элемент – нулевая битовая строка (0…0). Для каждой битовой строки противоположным элементом является эта же битовая строка. Доказательство коммутативности, ассоциативности операций и и дистрибутивность логического умножения относительно операции сводятся к доказательству этих свойств для битовых строк длиной 1, которое проводится прямыми вычислениями. Т.о., пространство битовых строк с операциями , является кольцом, которое обозначается . Это кольцо является ассоциативным кольцом с единицей.

Так как (;+) абелева группа, то противоположный элемент . Поэтому в К можно ввести операцию вычитания: .В силу свойства группы единственное решение уравнения .