
- •Методичні вказівки
- •1. Опис дисципліни Мета і завдання вивчення дисципліни
- •До виконання курсового проекту Завдання на курсовий проект
- •Методичні вказівки до виконання курсового проекту
- •Опорний план за методом мінімального вузла
- •Опорний план за методом мінімального вузла
- •Опорний план за методом мінімального вузла
- •Опорний план за методом випадкового
- •Перша ітерація тт
- •Друга ітерація тт
- •Третя ітерація тт
- •Четверта ітерація тт
- •П’ята ітерація тт
- •Шоста ітерація тт
- •5. Угорський метод розв’язання транспортної задачі про призначення
- •5.1. Постановка завдання
- •5.2. Розв’язання завдання
- •5.3. Приклад розв’язання задачі за допомогою угорського методу
- •Тт з оптимальним планом перевезень вантажу
- •Перша ітерація
- •6. Матрично-мережева модель управління перевезеннями вантажів в тс
- •Масив відстаней між сусідніми вузлами тм
- •Матриця транспортних кореспонденцій між всіма вузлами тм
- •Матриця найкоротших відстаней на тм
- •7. Література
- •Варіанти завдань по курсового проекту
- •Обсяги поставок і замовлень продукції до структур тм з номерами варіантів від 1-го до 15-го
- •Обсяги поставок і замовлень продукції до структур тм
- •Вартість перевезення одиниці вантажу між сусідніми вузлами тм
- •Матриця Пij – продуктивності виконання I–м тз j–ї тр
- •Завдання на курсову роботу студента
Опорний план за методом випадкового
заповнення клітинок ТТ
|
B1 |
B2 |
B3 |
B4 |
Запаси ai |
ai' |
ai'’ |
A1 |
4 803
|
7 205
|
2 –
|
5 –
|
100 |
100-80=20 |
20-20=0 |
A2 |
3 –
|
6 804
|
1 –
|
8 406
|
120 |
120-80=40 |
40-40=0 |
A3 |
9 –
|
3 –
|
6 1101
|
2 302
|
140 |
140-110=30 |
30-30=0 |
Заявки bj |
80 |
100 |
110 |
70 |
360 |
|
|
bj' |
80-80=0 |
100-80=20 |
110-110=0 |
70-30=40 |
|
|
|
bj'’ |
|
20-20=0 |
|
40-40=0 |
|
|
|
Одержали (m + n – 1) = 6 перевезень вантажу, отже складений опорний план не вироджений і ми можемо порахувати вартість його реалізації:
у.г.о.
3.12. Метод апроксимації Фогеля
Побудова опорного плану перевезень методом апроксимації Фогеля також розглянемо на тому же самому прикладі (див. табл. 1).
У кожному рядку і кожному стовпці матриці вартостей (табл. 39) шукаємо мінімальний і наступний за ним елементи (підкреслюємо відповідні значення). Різниця між ними записуємо праворуч і внизу таблиці і вибираємо з них максимальну величину. У нашому прикладі це значення 3, що зустрічається двічі – у другому і четвертому стовпцях (також підкреслюємо ці значення).
У такому випадку, перевіряють, чи є мінімальний елемент у стовпці також мінімальним і в рядку. Якщо такий елемент єдиний, то в нього й поміщають відповідну кореспонденцію. Якщо ж мінімальних елементів і в стовпці і у рядку декілька, то необхідно знайти в рядках другу різницю і вибрати той елемент, у якого друга різниця більше. У нашім випадку мінімальне значення 2 у четвертому стовпці одночасно є і мінімальним значенням у третьому рядку, а тому що воно єдине, те саме в цю клітку А3В4 і поміщаємо максимально можливу кореспонденцію 70, при цьому виключаємо з подальшого розгляду четвертий стовпець, поставивши в його вільних клітках знак “ –“, а нижче різниці - букву К (кінець). Різниці в інших стовпцях не змінилися, удруге їх не переписуємо. Різниці ж у рядках можуть змінитися, тому обчислюємо їх знову і записуємо у табл. 40.
Таблиця 39