Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
метод.Общие вопросы электричества.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
615.94 Кб
Скачать

I. Прочитайте и запомните следующие слова и словосочетания

consumer

потребитель

bulk transfer

массовая передача энергии

distribution

1)распределение, раздача; 2)распространение,

exploitation

эксплуатация

redundant

1) излишний, чрезмерный; 2) лишний

reliable

1) надежный; 2) прочный;

3) заслуживающий доверия, достоверный

alternating current

переменный ток

direct current

прямой ток

single-phase

однофазный

commodity

предмет широкого потребления

to require

1) приказывать, требовать; 2)нуждаться в ч-л.

II. Прочитайте и переведите текст

Electric power transmission

Electric power transmission, a process in the delivery of electricity to consumers, is the bulk transfer of electrical power. Typically, power transmission is between the power plant and a substation near a populated area. Electricity distribution is the delivery from the substation to the consumers. Electric power transmission allows distant energy sources (such as hydroelectric power plants) to be connected to consumers in population centers, and may allow exploitation of low-grade fuel resources that would otherwise be too costly to transport to generating facilities.

Due to the large amount of power involved, transmission normally takes place at high voltage (110 kV or above). Electricity is usually transmitted over long distance through overhead power transmission lines. Underground power transmission is used only in densely populated areas due to its high cost of installation and maintenance, and because the high reactive power produces large charging currents and difficulties in voltage management.

A power transmission system is sometimes referred to colloquially as a "grid"; however, for reasons of economy, the network is not a mathematical grid. Redundant paths and lines are provided so that power can be routed from any power plant to any load center, through a variety of routes, based on the economics of the transmission path and the cost of power. Much analysis is done by transmission companies to determine the maximum reliable capacity of each line, which, due to system stability considerations, may be less than the physical or thermal limit of the line. Deregulation of electricity companies in many countries has led to renewed interest in reliable economic design of transmission networks. However, in some places the gaming of a deregulated energy system has led to disaster, such as that which occurred during the California electricity crisis of 2000 and 2001.

AC power transmission is the transmission of electric power by alternating current. Usually transmission lines use three phase AC current. Single phase AC current is sometimes used in a railway electrification system. In urban areas, trains may be powered by DC at 600 volts or so.

Overhead conductors are not covered by insulation. The conductor material is nearly always an aluminum alloy, made into several strands and possibly reinforced with steel strands. Conductors are a commodity supplied by several companies worldwide. Improved conductor material and shapes are regularly used to allow increased capacity and modernize transmission circuits. Conductor sizes in overhead transmission work range in size from #6 American wire gauge (about 12 square millimetres) to 1,590,000 circular mils area (about 750 square millimetres), with varying resistance and current-carrying capacity. Thicker wires would lead to a relatively small increase in capacity due to the skin effect, that causes most of the current to flow close to the surface of the wire.

Today, transmission-level voltages are usually considered to be 110 kV and above. Lower voltages such as 69 kV and 33 kV are usually considered sub-transmission voltages but are occasionally used on long lines with light loads. Voltages less than 33 kV are usually used for distribution. Voltages above 230 kV are considered extra high voltage and require different designs compared to equipment used at lower voltages.

Overhead transmission lines are uninsulated wire, so design of these lines requires minimum clearances to be observed to maintain safety.