Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0215572_928D6_otvety_po_biofizike.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
3.61 Mб
Скачать

Билет № 4

  1. Механизм восприятия звуковых колебаний во внутреннем ухе.

Главной частью внутреннего уха является улитка, преобразующая механические колебания в электрический сигнал. Кроме улитки к внутреннему уху относится вестибулярный аппарат, который к слуховой функции отношения не имеет.

У литка человека является костным образованием длиной около 35 мм и имеет форму конусообразной спирали с 23/4 завитков. Диаметр у основания около 9 мм, высота равна приблизительно 5 мм.

Вдоль улитки проходят три канала. Один из них, который начинается от овального окна 7, называется вестибулярной лестницей 8. Другой канал идет от круглого окна 9, он называется барабанной лестницей 10. Вестибулярная и барабанная лестницы соединены в области купола улитки посредством маленького отверстия — геликотремы 11. Таким образом, оба эти канала в некотором роде представляют единую систему, наполненную перилимфой. Колебания стремечка 6 передаются мембране овального окна 7, от нее перилимфе и «выпячивают» мембрану круглого окна 9. Пространство между вестибулярной и барабанной лестницами называется улитковым каналом 12, он заполнен эндолимфой. Между улитковым каналом и барабанной лестницей вдоль улитки проходит основная (базилярная) мембрана 13. На ней находится кортиев орган, содержащий рецепторные (волосковые) клетки, от улитки идет слуховой нерв. Кортиев орган (спиральный орган) и является преобразователем механических колебаний в электрический сигнал.

Длина основной мембраны около 32 мм, она расширяется и утончается в направлении от овального окна к верхушке улитки (от ширины 0,1 до 0,5 мм). Основная мембрана — весьма интересная для физики структура, она обладает частотно-избирательными свойствами. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна распространится волна по основной мембране, прежде чем она начнет затухать. Таким образом, во внутреннем ухе прослеживается определенная функциональная цепь: колебание мембраны овального окна — колебание перилимфы — сложные колебания основной мембраны — раздражение волосковых клеток (рецепторы кортиева органа) — генерация электрического сигнала.

Билет № 4

  1. Пассивные механические свойства мышцы. Механическая модель мышцы Хилла.

Скелетная мышца в покое по механическому поведению представляет собой вязкоупругий материал. В частности, для нее характерна релаксация напряжения. При внезапном растяжении мышцы на определенную величину напряжение резко возрастает, а затем уменьшается до определенного равновесного уровня. И, наоборот, когда мышца, находившаяся в растянутом состоянии, внезапно укорачивается, напряжение сильно падает и после этого выходит на меньший равновесный уровень. Соответственно модуль упругости е мышцы будет не постоянным, а различным при разных нагрузках. Находят такой модуль упругости (называемый эффективным, или тангенциальным) по модифицированному уравнению

где dl — небольшое увеличение длины, a d — соответствующее увеличение напряжения.

Эффективный модуль упругости покоящейся скелетной мышцы, резко возрастает при увеличении длины (напряжения). При разных удлинениях скелетная мышца по-разному реагирует на изменение температуры.

Экспериментальная методика измерений была развита в классических работах Хилла и в дальнейшем не раз совершенствовалась. На рис. изображена схема установки. Мышца М прикреплена к рычагу. Другой конец мышцы закреплен. Сокращение стимулируется электродами Э. При изучении одиночных изотонических сокращений мышца нагружается в положении Р. Напряжение определяется с помощью датчика, находящегося в положении А. При измерении изометрического напряжения датчик переводится в положение Б. Изотоническое укорочение определяется по движению другого конца рычага, фиксируемому с помощью фотоэлемента Ф. Стопор С, контролируемый электромагнитом ЭМ, применяется для того, чтобы поддерживать желаемую длину мышцы или освобождать изотермически сокращаемую мышцу до желаемой степени.

Опыты с икроножной мышцей лягушки показывают, что в первые 15 мс после возбуждения одиночного изометрического сокращения происходит ряд изменений, определяемых процессом выделения ионов Са2+ из саркоплазматического ретикулума. Затем напряжение начинает расти, достигая своего максимума через 170 мс (при 0°С). Далее оно падает, исчезая полностью более чем через 1 с. При изотоническом сокращении укорочение убывает с ростом груза Р; его максимум достигается тем раньше, чем больше этот груз. Затем происходит релаксация к исходному состоянию. Развитие изотонического напряжения в мышце следует практически той же временной кривой, что и развитие изометрического напряжения.

Хилл эмпирически установил основное, характеристическое уравнение в механике мышечного сокращения. Оно связывает стационарную скорость изотонического сокращения, укорочения, V с нагрузкой Р и имеет гиперболическую форму:

Р0— максимальное напряжение, развиваемое мышцей, или максимальный груз, поддерживаемый мышцей без ее удлинения, а и b — константы.