
- •Билет № 1
- •Динамика белков. Гемоглобин и миоглобин. Конформационные изменения гемоглобина при оксигенации.
- •Билет № 1
- •Условия светопоглощения (взаимодействия квантов света) в биологических системах.
- •Билет № 1
- •Биофизические основы восприятия звука. Закон Вебера-Фехнера. Пороги слышимости у человека.
- •Билет № 2
- •Состав и функции биологических мембран
- •Билет № 2
- •2. Работа мышцы при различных режимах сокращения. Уравнение Хилла. Механическая эффективность работы мышцы.
- •Билет № 2
- •3. Низкочастотные механические колебания в теле человека. Кохлеарная акустическая эмиссия. Их источники. Методы регистрации.
- •Билет № 3
- •Механизмы ферментативного катализа. Модели Фишера, Кошланда.
- •Билет № 3
- •Активное сокращение мышцы в изометрическом и изотоническом режимах.
- •Билет № 3
- •Инфракрасное, оптическое и свч-излучения тела человека. Их природа. Методы регистрации.
- •Билет № 4
- •Механизм восприятия звуковых колебаний во внутреннем ухе.
- •Билет № 4
- •Пассивные механические свойства мышцы. Механическая модель мышцы Хилла.
- •Билет № 4
- •Электрическое и магнитное поле тела человека. Методы регистрации.
- •Билет № 5
- •Стабилизация белковой глобулы. Роль водного окружения.
- •Свойства воды гидратной оболочки
- •Билет № 5
- •Электромеханическое сопряжение в клетке скелетных мышц.
- •Билет № 5
- •Виды физических полей тела человека. Их источники.
- •Билет № 6
- •Основные типы вторичной структуры полипептидов и белков. Стабилизация вторичной структуры.
- •Билет № 6
- •Электромеханическое сопряжение в мышечной клетке сердца (кардиомиоците).
- •Билет № 6
- •Биологические эффекты ультрафиолетового излучения и их использование в медицине.
- •Билет № 7
- •Химическая (первичная) структура белковой молекулы. Аминокислоты и их свойства.
- •Общие химические свойства аминокислот:
- •Классификация стандартных аминокислот по r-группам
- •Билет № 7
- •Кинетическая теория мышечного сокращения в. Дещеревского.
- •Билет № 7
- •Биолюминесценция как частный случай хемилюминесценции.
- •Биологические функции
- •Билет № 8
- •Физические свойства воды. Структурные модели воды. Гидратация ионов.
- •Билет № 8
- •Модель скользящих нитей Хаксли и ее основные положения.
- •Билет № 8
- •Биофизические основы зрения. Структура фоторецепторных клеток. Рецепторные потенциалы.
- •Билет № 9
- •Гидрофобные взаимодействия. Роль в биосистемах.
- •Билет № 9
- •Уравнение Ходжкина-Хаксли для ионных токов в биологических мембранах.
- •Билет № 9
- •Физико-химические основы фотобиологических процессов.
- •Билет № 10
- •Водородная связь и ее роль в биологических системах.
- •Билет № 10
- •Структура мышечной клетки и мышечных белков.
- •Билет № 10
- •Гемодинамические процессы и их количественная характеристика.
- •Билет № 11
- •Индукционные и дисперсионные силы в макромолекулах.
- •Билет № 11
- •Индукционные и дисперсионные силы в макромолекулах.Продолжение
- •Билет № 11
- •Билет № 11
- •Билет № 12
- •Билет № 12
- •Мембранный потенциал покоя; его происхождение. Уравнение Нернста.
- •Билет № 12
- •Электрическая активность головного мозга. Метод регистрации.
- •Билет № 13
- •Второй закон термодинамики в открытых системах. Изменение энтропии открытых систем.
- •Билет № 13
- •Активный перенос ионов через биологические мембраны при участии атФаз.
- •Билет № 13
- •Физические основы электрической активности сердца. Модель Эйнтховена. Методы регистрации.
- •Билет № 14
- •Энтропия и термодинамическая вероятность. Свободная энергия Гиббса.
- •Билет № 14
- •Активный транспорт веществ через биологические мембраны. Опыты Уссинга.
- •Билет № 14
- •Биофизические процессы восприятия звуковых колебаний в наружном и среднем ухе.
- •Билет № 15
- •Равновесная термодинамика. Первое и второе начала термодинамики.
- •Билет № 15
- •Виды пассивного транспорта веществ через биологические мембраны.
- •Билет № 15
- •Молекулярный механизм фоторецепции. Фотопревращения зрительного пигмента.
- •Билет № 16
- •Цветовое зрение. Цветочувствительность. Теории цветоощущения.
- •Билет № 16
- •Транспорт ионов через биологические мембраны при участии переносчиков. Подвижные переносчики. Каналообразующие агенты.
- •Билет № 16
- •Активные электрические свойства органов. Принцип эквивалентного генератора. Методы исследования.
- •Билет № 17
- •Конкурентный, неконкурентный и бесконкурентный тип ингибирования ферментативных реакций.
- •Билет № 17
- •Транспорт молекул через биологические мембраны путем облегченной диффузии. Переносчик глюкозы в мембранах эритроцитов.
- •Билет № 17
- •Транспорт молекул через биологические мембраны путем облегченной диффузии. Переносчик глюкозы в мембранах эритроцитов. Продолжение
- •Билет № 17
- •Особенности взаимодействия с биологическими объектами инфракрасного, видимого, ультрафиолетового и ионизирующего излучений окружающей среды.
- •Билет № 18
- •Кинетика ферментативных реакций. Уравнение Михаэлиса-Ментен.
- •Билет № 18
- •Пассивный транспорт молекул и ионов через биологические мембраны. Электродиффузионное уравнение Нернста-Планка.
- •Билет № 18
- •Особенности взаимодействия с биологическими объектами электромагнитных волн радио-, увч- и свч-диапазонов окружающей среды.
- •Билет № 19
- •Химическая кинетика. Классификация химических реакций. Скорость реакции. Молекулярность, стехиометрия, порядок.
- •Классификация химических реакций: По фазовому составу реагирующей системы
- •По типу превращений реагирующих частиц
- •Билет № 19
- •Транспорт веществ и электролитов через биологические мембраны. Уравнение диффузии Фика.
- •Билет № 19
- •Естественные источники электромагнитных излучений как фактор среды обитания человека. Шкала электромагнитных волн.
- •Билет № 20
- •Модель «хищник-жертва» Вольтерра. Модель изменения численности популяций с учетом внутривидовой конкуренции.
- •Билет № 20
- •Физическое состояние и фазовые переходы в липидном бислое биологических мембран.
- •Билет № 20
- •Сопротивление биологических объектов электрическому току. Электропроводность биологических объектов.
- •Крутизну дисперсии электропроводности выражают отношением величины сопротивления, измеренного на низкой частоте, к величине сопротивления, измеренного на низкой частоте при одних и тех же условиях.
- •Билет № 21
- •Математические модели роста численности популяции. Модель естественного роста численности популяций.
- •2. Модель логистического роста
- •Билет № 21
- •Структура клеточных мембран. Модели.
- •Билет № 21
- •Пассивные электрические свойства биологических объектов. Явления поляризации.
Билет № 20
Модель «хищник-жертва» Вольтерра. Модель изменения численности популяций с учетом внутривидовой конкуренции.
Один вид является хищником по отношению друг к другу:
Найдем координаты особой точки
1х
- 1хy
= 0; x
(1
- - 1y)
= 0;
- 2у
+ 2хy
= 0 -y
(2
- 2х)
= 0
Т.к. все параметры
положительны, точка
расположена в положительном квадранте
фазовой плоскости.
В этом случае фазовые траектории вблизи особой точки представляют собой концентрические эллипсы, а сама особая точка является центром. Вдали от особой точки фазовые траектории являются замкнутыми, хотя их форма отличается от эллипсовидной.
Особая точка типа центр является в целом неустойчивой точкой.
|
|
Пусть колебания
и
происходят таким образом, что изображающая
точка движется по фазовой траектории
1.
В
момент времени, когда точка находится
в положении М, в систему извне добавляют
некоторое число особей у,
такое, что изображающая точка переходит
скачком из точки М в точку М.
После этого, если система будет
предоставлена самой себе, колебания
х(t),
у(t)
уже будут происходить с большими
амплитудами, чем прежде.
Изображающая точка будет двигаться по траектории (2). Таким образом, колебания в системе неустойчивые, меняют свои характеристики при внешнем воздействии. Ситуации часто наблюдались на практике. Можно было бы показать, что результат получится более обнадеживающим, если истребления хищника вести сезонно, согласуя сезоны охоты с характером цикла.
На рисунке приведены графики функций х(t), у(t). Видно, что х(t) и у(t) являются периодическими функциями времени, причем максимум чмсленности жертв всегда опережает максимум численности хищников.
На основе рассмотренной системы можно конструировать более сложные модели. Так, можно учесть внутривидовую конкуренцию:
Билет № 20
Физическое состояние и фазовые переходы в липидном бислое биологических мембран.
Консистенция мембраны зависит от температуры. При физиологической температуре мембрана, как правило, находится в жидкостном состоянии, сохраняя при этом общую упорядоченность структуры, хотя отдельные ее части обладают свободой движения. при понижении температуры подвижность плоской мембраны уменьшается и мембрана переходит в состояние “кристаллического геля”.
Этот переход зависит от химического состава. При этом важное значение имеют следующие параметры:
1. Длина цепи жирной
кислоты. Жирная кислота с длинной цепью
обладает более высокой подвижностью,
чем жирная кислота с короткой цепью. С
увеличением длины на
группы температура фазового перехода
увеличивается примерно на
2. Степень насыщения жирных кислот. Если пленка состоит из смеси насыщенных и ненасыщенных фосфолипидов, то в месте расположения двойных связей нарушается порядок, т.к. не будет соблюдаться строго параллельное расположение цепей. Поэтому пленки из насыщенных и ненасыщенных цепей при этой же температуре более жидкие чем пленки, построенные из одних только насыщенных цепей. При увеличении степени насыщенности температура фазового перехода понижается.
3. Присутствие и распределение холестерина в мембране. Холестерин относится к так называемым простым липидам; это липидное соединение, которое является отличительной составной частью многих мембран.
4. Процентного содержания воды в системе. Тф.п. липидов в безводном состоянии много выше, чем для диспергированных в воде липидов.
При фазовом переходе
в мембранах изменяются скачком энтропия
и ее объем, т.е. объем и энтропия системы,
являющиеся первыми производными
свободной энергии
и
претерпевают
разрыв в точке фазового перехода.
Для перехода
первого порядка
в то время как объем и энтропия меняются.
С этой точки зрения любые фазовые
переходы в липидах сопровождаются
изменениями энтропии и объема, являются
переходами первого рода.
Изменение свободной энергии в изотермическом процессе.
температура
перехода.
Фазовый переход происходит при постоянной температуре с поглощением теплоты. Таким образом, для перехода первого рода характерно наличие скрытой теплоты перехода.
Плавление жирнокислотных цепей при фазовом переходе обусловлено вращательной изомеризацией. Наименьшей энергией обладает транс-, а наибольшей – цис-конфигурация.
Гош конформации
(гош(+) и
гош(–); поворот на
относительно транс-конформации)
сравнительно мало превышает по энергии
транс-конформацию
но эти состояния разделяет энергетический
барьер высотой