
- •Билет № 1
- •Динамика белков. Гемоглобин и миоглобин. Конформационные изменения гемоглобина при оксигенации.
- •Билет № 1
- •Условия светопоглощения (взаимодействия квантов света) в биологических системах.
- •Билет № 1
- •Биофизические основы восприятия звука. Закон Вебера-Фехнера. Пороги слышимости у человека.
- •Билет № 2
- •Состав и функции биологических мембран
- •Билет № 2
- •2. Работа мышцы при различных режимах сокращения. Уравнение Хилла. Механическая эффективность работы мышцы.
- •Билет № 2
- •3. Низкочастотные механические колебания в теле человека. Кохлеарная акустическая эмиссия. Их источники. Методы регистрации.
- •Билет № 3
- •Механизмы ферментативного катализа. Модели Фишера, Кошланда.
- •Билет № 3
- •Активное сокращение мышцы в изометрическом и изотоническом режимах.
- •Билет № 3
- •Инфракрасное, оптическое и свч-излучения тела человека. Их природа. Методы регистрации.
- •Билет № 4
- •Механизм восприятия звуковых колебаний во внутреннем ухе.
- •Билет № 4
- •Пассивные механические свойства мышцы. Механическая модель мышцы Хилла.
- •Билет № 4
- •Электрическое и магнитное поле тела человека. Методы регистрации.
- •Билет № 5
- •Стабилизация белковой глобулы. Роль водного окружения.
- •Свойства воды гидратной оболочки
- •Билет № 5
- •Электромеханическое сопряжение в клетке скелетных мышц.
- •Билет № 5
- •Виды физических полей тела человека. Их источники.
- •Билет № 6
- •Основные типы вторичной структуры полипептидов и белков. Стабилизация вторичной структуры.
- •Билет № 6
- •Электромеханическое сопряжение в мышечной клетке сердца (кардиомиоците).
- •Билет № 6
- •Биологические эффекты ультрафиолетового излучения и их использование в медицине.
- •Билет № 7
- •Химическая (первичная) структура белковой молекулы. Аминокислоты и их свойства.
- •Общие химические свойства аминокислот:
- •Классификация стандартных аминокислот по r-группам
- •Билет № 7
- •Кинетическая теория мышечного сокращения в. Дещеревского.
- •Билет № 7
- •Биолюминесценция как частный случай хемилюминесценции.
- •Биологические функции
- •Билет № 8
- •Физические свойства воды. Структурные модели воды. Гидратация ионов.
- •Билет № 8
- •Модель скользящих нитей Хаксли и ее основные положения.
- •Билет № 8
- •Биофизические основы зрения. Структура фоторецепторных клеток. Рецепторные потенциалы.
- •Билет № 9
- •Гидрофобные взаимодействия. Роль в биосистемах.
- •Билет № 9
- •Уравнение Ходжкина-Хаксли для ионных токов в биологических мембранах.
- •Билет № 9
- •Физико-химические основы фотобиологических процессов.
- •Билет № 10
- •Водородная связь и ее роль в биологических системах.
- •Билет № 10
- •Структура мышечной клетки и мышечных белков.
- •Билет № 10
- •Гемодинамические процессы и их количественная характеристика.
- •Билет № 11
- •Индукционные и дисперсионные силы в макромолекулах.
- •Билет № 11
- •Индукционные и дисперсионные силы в макромолекулах.Продолжение
- •Билет № 11
- •Билет № 11
- •Билет № 12
- •Билет № 12
- •Мембранный потенциал покоя; его происхождение. Уравнение Нернста.
- •Билет № 12
- •Электрическая активность головного мозга. Метод регистрации.
- •Билет № 13
- •Второй закон термодинамики в открытых системах. Изменение энтропии открытых систем.
- •Билет № 13
- •Активный перенос ионов через биологические мембраны при участии атФаз.
- •Билет № 13
- •Физические основы электрической активности сердца. Модель Эйнтховена. Методы регистрации.
- •Билет № 14
- •Энтропия и термодинамическая вероятность. Свободная энергия Гиббса.
- •Билет № 14
- •Активный транспорт веществ через биологические мембраны. Опыты Уссинга.
- •Билет № 14
- •Биофизические процессы восприятия звуковых колебаний в наружном и среднем ухе.
- •Билет № 15
- •Равновесная термодинамика. Первое и второе начала термодинамики.
- •Билет № 15
- •Виды пассивного транспорта веществ через биологические мембраны.
- •Билет № 15
- •Молекулярный механизм фоторецепции. Фотопревращения зрительного пигмента.
- •Билет № 16
- •Цветовое зрение. Цветочувствительность. Теории цветоощущения.
- •Билет № 16
- •Транспорт ионов через биологические мембраны при участии переносчиков. Подвижные переносчики. Каналообразующие агенты.
- •Билет № 16
- •Активные электрические свойства органов. Принцип эквивалентного генератора. Методы исследования.
- •Билет № 17
- •Конкурентный, неконкурентный и бесконкурентный тип ингибирования ферментативных реакций.
- •Билет № 17
- •Транспорт молекул через биологические мембраны путем облегченной диффузии. Переносчик глюкозы в мембранах эритроцитов.
- •Билет № 17
- •Транспорт молекул через биологические мембраны путем облегченной диффузии. Переносчик глюкозы в мембранах эритроцитов. Продолжение
- •Билет № 17
- •Особенности взаимодействия с биологическими объектами инфракрасного, видимого, ультрафиолетового и ионизирующего излучений окружающей среды.
- •Билет № 18
- •Кинетика ферментативных реакций. Уравнение Михаэлиса-Ментен.
- •Билет № 18
- •Пассивный транспорт молекул и ионов через биологические мембраны. Электродиффузионное уравнение Нернста-Планка.
- •Билет № 18
- •Особенности взаимодействия с биологическими объектами электромагнитных волн радио-, увч- и свч-диапазонов окружающей среды.
- •Билет № 19
- •Химическая кинетика. Классификация химических реакций. Скорость реакции. Молекулярность, стехиометрия, порядок.
- •Классификация химических реакций: По фазовому составу реагирующей системы
- •По типу превращений реагирующих частиц
- •Билет № 19
- •Транспорт веществ и электролитов через биологические мембраны. Уравнение диффузии Фика.
- •Билет № 19
- •Естественные источники электромагнитных излучений как фактор среды обитания человека. Шкала электромагнитных волн.
- •Билет № 20
- •Модель «хищник-жертва» Вольтерра. Модель изменения численности популяций с учетом внутривидовой конкуренции.
- •Билет № 20
- •Физическое состояние и фазовые переходы в липидном бислое биологических мембран.
- •Билет № 20
- •Сопротивление биологических объектов электрическому току. Электропроводность биологических объектов.
- •Крутизну дисперсии электропроводности выражают отношением величины сопротивления, измеренного на низкой частоте, к величине сопротивления, измеренного на низкой частоте при одних и тех же условиях.
- •Билет № 21
- •Математические модели роста численности популяции. Модель естественного роста численности популяций.
- •2. Модель логистического роста
- •Билет № 21
- •Структура клеточных мембран. Модели.
- •Билет № 21
- •Пассивные электрические свойства биологических объектов. Явления поляризации.
Билет № 12
Мембранный потенциал покоя; его происхождение. Уравнение Нернста.
Пусть мы имеем два раствора KCl с концентрацией 10 мМ (раствор 1) и 100 мМ (раствор 2), разделенные проницаемой для катионов мембраной. Мембрана имеет поры, вдоль которых расположены фиксированные отрицательные заряды.
В процессе установления равновесия небольшое количество ионов калия проходит через мембрану, заряжая ее, и приводя к появлению разности электрических потенциалов. Диффузия ведет к накоплению положительного заряда в компартменте 1 (электростатические силы заставляют этот заряд удерживаться на мембране) и оставляет в компартменте 2 избыток отрицательного заряда, который благодаря электростатическим силам собирается на мембране с правой стороны. Это приводит к образованию электростатического поля, направленного от 1 к 2, возрастающего по величине по мере диффузии ионов К+ из раствора 2 в раствор 1. Возрастающее электрическое поле все более препятствует диффузии. Когда разность потенциалов «уравновешивает» градиент концентрации ионов калия, дальнейшая диффузия этих ионов через мембрану прекращается и наступает равновесие. Следовательно, электрохимические потенциалы ионов калия (максимальна работа, которую можно совершить при переносе одного моля ионов калия в некоторое условное стандартное состояние) будут одинаковы для обоих растворов, разделенных мембраной.
зависит только от
природы растворителя.
Потенциал Нернста – потенциал, при котором ион сорта j находится в равновесии с действующей на него диффузионной силой. Можно рассматривать этот потенциал как электрическую меру уравновешиваемой им силы диффузии, возникающей из-за разности концентрации по разные стороны проницаемой мембраны. Для биологических клеток трансмембранный потенциал принято определять как разность внутреннего и наружного потенциалов.
|
Рис. 1. Некоторые электрические потенциалы внутри живой клетки o – потенциал вне клетки; i – потенциал внутри клетки; x – потенциал внутри матрикса митохондрий |
Между водными фазами, разделяемыми мембранами, имеются разности потенциалов, называемые трансмембранными или же просто мембранными потенциалами. Митохондриальный потенциал – это разность потенциалов между матриксом митохондрий x и внутриклеточной средой i. Таким образом,
mx – мембранный потенциал митохондрий.
Кроме трансмембранной разности потенциалов может существовать разность электрических потенциалов между липидной фазой мембраны и омывающим водным раствором - так называемый межфазный потенциал. Если на поверхности мембраны имеются заряженные химические группы, например, остатки фосфорной кислоты, то возникает разность потенциалов между поверхностью мембраны и окружающей средой, так называемый поверхностный потенциал.
Билет № 12
Электрическая активность головного мозга. Метод регистрации.
Генез ЭЭГ определяется в основном электрической активностью коры больших полушарий головного мозга, а на уровне клеток — активностью ее пирамидных нейронов. У пирамидных нейронов выделяют два типа электрической активности. Импульсный разряд (потенциал действия) с длительностью около 1 мс и более медленное (градуальное) колебание мембранного потенциала — тормозные и возбуждающие постсинаптические потенциалы (ПСП). Тормозные ПСП пирамидных клеток генерируются в основном в теле нейрона, а возбуждающие ПСП — преимущественно в дендритах. Правда, на теле нейрона имеется определенное количество возбуждающих синапсов, и соответственно этому тело пирамидных нейронов (сома) способно генерировать также и возбуждающие ПСП. Длительность ПСП пирамидных клеток по крайней мере на порядок больше продолжительности импульсного разряда.
Электрофизиологи регистрируют электрическую активность мозга — с помощью тонких электродов, позволяющих записывать разряды отдельных нейронов, или с помощью электроэнцефалографии (методики отведения потенциалов мозга с поверхности головы).
Тонкий электрод может быть сделан из металла (покрытого изоляционным материалом, обнажающим лишь острый кончик) или из стекла. Стеклянный электрод представляет собой тонкую трубочку, заполненную внутри солевым раствором. Электрод может быть настолько тонок, что проникает внутрь клетки и позволяет записывать внутриклеточные потенциалы. Другой способ регистрации активности нейронов — внеклеточный.
В некоторых случаях тонкие электроды (от одного до несколько сотен) вживляются в мозг, и исследователи регистрируют активность продолжительное время. В других случаях электрод вводится в мозг только на время эксперимента, а по окончании записи извлекается.
С помощью тонкого электрода можно регистрировать как активность отдельных нейронов, так и локальные потенциалы (local field potentials), образующиеся в результате активности многих сотен нейронов. С помощью ЭЭГ электродов, а также поверхностных электродов, накладываемых непосредственно на мозг, можно регистрировать только глобальную активность большого количества нейронов. Полагают, что регистрируемая таким образом активность складывается как из нейронных потенциалов действия (то есть нейронных импульсов), так и подпороговых деполяризаций и гиперполяризаций.
При анализе потенциалов мозга часто производят их спектральный анализ, причём разные компоненты спектра имеют разные названия: дельта (0,5—4 Гц), тета 1 (4—6 Гц), тета 2 (6—8 Гц), альфа (8—13 Гц), бета 1 (13—20 Гц), бета 2 (20—40 Гц), гамма-волны (включает частоту бета 2 ритма и выше).