
- •Билет № 1
- •Динамика белков. Гемоглобин и миоглобин. Конформационные изменения гемоглобина при оксигенации.
- •Билет № 1
- •Условия светопоглощения (взаимодействия квантов света) в биологических системах.
- •Билет № 1
- •Биофизические основы восприятия звука. Закон Вебера-Фехнера. Пороги слышимости у человека.
- •Билет № 2
- •Состав и функции биологических мембран
- •Билет № 2
- •2. Работа мышцы при различных режимах сокращения. Уравнение Хилла. Механическая эффективность работы мышцы.
- •Билет № 2
- •3. Низкочастотные механические колебания в теле человека. Кохлеарная акустическая эмиссия. Их источники. Методы регистрации.
- •Билет № 3
- •Механизмы ферментативного катализа. Модели Фишера, Кошланда.
- •Билет № 3
- •Активное сокращение мышцы в изометрическом и изотоническом режимах.
- •Билет № 3
- •Инфракрасное, оптическое и свч-излучения тела человека. Их природа. Методы регистрации.
- •Билет № 4
- •Механизм восприятия звуковых колебаний во внутреннем ухе.
- •Билет № 4
- •Пассивные механические свойства мышцы. Механическая модель мышцы Хилла.
- •Билет № 4
- •Электрическое и магнитное поле тела человека. Методы регистрации.
- •Билет № 5
- •Стабилизация белковой глобулы. Роль водного окружения.
- •Свойства воды гидратной оболочки
- •Билет № 5
- •Электромеханическое сопряжение в клетке скелетных мышц.
- •Билет № 5
- •Виды физических полей тела человека. Их источники.
- •Билет № 6
- •Основные типы вторичной структуры полипептидов и белков. Стабилизация вторичной структуры.
- •Билет № 6
- •Электромеханическое сопряжение в мышечной клетке сердца (кардиомиоците).
- •Билет № 6
- •Биологические эффекты ультрафиолетового излучения и их использование в медицине.
- •Билет № 7
- •Химическая (первичная) структура белковой молекулы. Аминокислоты и их свойства.
- •Общие химические свойства аминокислот:
- •Классификация стандартных аминокислот по r-группам
- •Билет № 7
- •Кинетическая теория мышечного сокращения в. Дещеревского.
- •Билет № 7
- •Биолюминесценция как частный случай хемилюминесценции.
- •Биологические функции
- •Билет № 8
- •Физические свойства воды. Структурные модели воды. Гидратация ионов.
- •Билет № 8
- •Модель скользящих нитей Хаксли и ее основные положения.
- •Билет № 8
- •Биофизические основы зрения. Структура фоторецепторных клеток. Рецепторные потенциалы.
- •Билет № 9
- •Гидрофобные взаимодействия. Роль в биосистемах.
- •Билет № 9
- •Уравнение Ходжкина-Хаксли для ионных токов в биологических мембранах.
- •Билет № 9
- •Физико-химические основы фотобиологических процессов.
- •Билет № 10
- •Водородная связь и ее роль в биологических системах.
- •Билет № 10
- •Структура мышечной клетки и мышечных белков.
- •Билет № 10
- •Гемодинамические процессы и их количественная характеристика.
- •Билет № 11
- •Индукционные и дисперсионные силы в макромолекулах.
- •Билет № 11
- •Индукционные и дисперсионные силы в макромолекулах.Продолжение
- •Билет № 11
- •Билет № 11
- •Билет № 12
- •Билет № 12
- •Мембранный потенциал покоя; его происхождение. Уравнение Нернста.
- •Билет № 12
- •Электрическая активность головного мозга. Метод регистрации.
- •Билет № 13
- •Второй закон термодинамики в открытых системах. Изменение энтропии открытых систем.
- •Билет № 13
- •Активный перенос ионов через биологические мембраны при участии атФаз.
- •Билет № 13
- •Физические основы электрической активности сердца. Модель Эйнтховена. Методы регистрации.
- •Билет № 14
- •Энтропия и термодинамическая вероятность. Свободная энергия Гиббса.
- •Билет № 14
- •Активный транспорт веществ через биологические мембраны. Опыты Уссинга.
- •Билет № 14
- •Биофизические процессы восприятия звуковых колебаний в наружном и среднем ухе.
- •Билет № 15
- •Равновесная термодинамика. Первое и второе начала термодинамики.
- •Билет № 15
- •Виды пассивного транспорта веществ через биологические мембраны.
- •Билет № 15
- •Молекулярный механизм фоторецепции. Фотопревращения зрительного пигмента.
- •Билет № 16
- •Цветовое зрение. Цветочувствительность. Теории цветоощущения.
- •Билет № 16
- •Транспорт ионов через биологические мембраны при участии переносчиков. Подвижные переносчики. Каналообразующие агенты.
- •Билет № 16
- •Активные электрические свойства органов. Принцип эквивалентного генератора. Методы исследования.
- •Билет № 17
- •Конкурентный, неконкурентный и бесконкурентный тип ингибирования ферментативных реакций.
- •Билет № 17
- •Транспорт молекул через биологические мембраны путем облегченной диффузии. Переносчик глюкозы в мембранах эритроцитов.
- •Билет № 17
- •Транспорт молекул через биологические мембраны путем облегченной диффузии. Переносчик глюкозы в мембранах эритроцитов. Продолжение
- •Билет № 17
- •Особенности взаимодействия с биологическими объектами инфракрасного, видимого, ультрафиолетового и ионизирующего излучений окружающей среды.
- •Билет № 18
- •Кинетика ферментативных реакций. Уравнение Михаэлиса-Ментен.
- •Билет № 18
- •Пассивный транспорт молекул и ионов через биологические мембраны. Электродиффузионное уравнение Нернста-Планка.
- •Билет № 18
- •Особенности взаимодействия с биологическими объектами электромагнитных волн радио-, увч- и свч-диапазонов окружающей среды.
- •Билет № 19
- •Химическая кинетика. Классификация химических реакций. Скорость реакции. Молекулярность, стехиометрия, порядок.
- •Классификация химических реакций: По фазовому составу реагирующей системы
- •По типу превращений реагирующих частиц
- •Билет № 19
- •Транспорт веществ и электролитов через биологические мембраны. Уравнение диффузии Фика.
- •Билет № 19
- •Естественные источники электромагнитных излучений как фактор среды обитания человека. Шкала электромагнитных волн.
- •Билет № 20
- •Модель «хищник-жертва» Вольтерра. Модель изменения численности популяций с учетом внутривидовой конкуренции.
- •Билет № 20
- •Физическое состояние и фазовые переходы в липидном бислое биологических мембран.
- •Билет № 20
- •Сопротивление биологических объектов электрическому току. Электропроводность биологических объектов.
- •Крутизну дисперсии электропроводности выражают отношением величины сопротивления, измеренного на низкой частоте, к величине сопротивления, измеренного на низкой частоте при одних и тех же условиях.
- •Билет № 21
- •Математические модели роста численности популяции. Модель естественного роста численности популяций.
- •2. Модель логистического роста
- •Билет № 21
- •Структура клеточных мембран. Модели.
- •Билет № 21
- •Пассивные электрические свойства биологических объектов. Явления поляризации.
Билет № 1
Условия светопоглощения (взаимодействия квантов света) в биологических системах.
Особенностью биологического действия электромагнитного излучения оптического диапазона, включающего ультрафиолетовый (200 — 400 нм) и видимый (400 — 750 нм) свет, является ярко выраженная зависимость биологического эффекта от длины волны излучения. Меняя длину волны, можно избирательно запускать те или иные фотобиологические процессы. Поэтому важно представлять, во-первых, действию света каких длин волн мы подвергаемся, а во-вторых, почему биологический эффект зависит от длины волны.
К фотобиологическим (фотомедицинским) относят процессы, начинающиеся с поглощения кванта света биологически важной молекулой и заканчивающиеся какой-либо физиологической реакцией (позитивной или негативной) на уровне организма. Ясно, что фотобиологический процесс инициируется только при условии поглощения кванта света подходящей молекулой-акцептором. Например, бактерицидные эффекты возникают в результате поглощения света молекулами ДНК в клетках бактерий и последующих химических реакций запасших энергию квантов света (электронно-возбужденных) молекул ДНК. Следовательно, бактерицидные эффекты можно вызвать только тем светом, который поглощают молекулы ДНК.
Поглощение монохроматического света веществом описывается законом Бугера—Ламберта—Бера
I = I0e-сl
где I и I0 — интенсивности ослабленного образцом и падающего на образец монохроматического света; l — толщина образца (см); c — концентрация вещества в образце, выражаемая в молях на литр (М); коэффициент [л/(моль • см)] характеризуют способность молекул исследуемого вещества поглощать свет данной длины волны и называется и молярным коэффициентом поглощения.
Спектр поглощения ДНК представляет собой широкую неструктурированную полосу и находится в области 200 — 315 нм с максимумом около 260 нм. Спектры поглощения других биологически важных молекул (белков, коферментов, пигментов и т.д.) также представляют собой широкие полосы, но по положению отличаются от спектров ДНК. Интересно что почти все различно окрашенные биологически важные молекулы состоят главным образом из следующих бесцветных, не поглощающих свет элементов: С, Н, О и N. Способность поглощать свет и положение полосы поглощения определяются прежде всего тем, как связаны между собой в молекулах атомы углерода. Молекулы ненасыщенных липидов, содержащие несопряженные двойные связи (двойные связи разделены двумя или более одинарными связями), имеют максимум поглощения короче 200 нм. При окислении липидов двойные связи сдвигаются и становятся сопряженными. При сопряжении двух связей (диеновые конъюгаты) возникает максимум поглощения около 233 нм, при образовании триеновых конъюгатов появляется максимум около 260 — 280 нм. Ретиналь содержит шесть сопряженных связей и имеет максимум поглощения около 360 нм. У каротиноидов еще более длинная система сопряженных связей и еще более длинноволновое поглощение. Таким образом, достаточно посмотреть на структурную формулу молекулы, чтобы определить, способна ли она поглощать свет, и даже примерно предсказать положение полосы поглощения.
Меняя длину волны, можно избирательно возбуждать и фотохимически модифицировать разные биомолекулы. На этом основана избирательность действия света — важнейшая черта фотобиологии, выгодно отличающая ее от радиобиологии. Поглощение квантов рентгеновского или гамма-излучения осуществляется не молекулами, а атомами и не зависит от того, в состав каких молекул эти атомы входят. Поэтому поглощение ионизирующего излучения происходит в основном теми элементами, которых в организме больше. А так как наш организм на 80% состоит из воды, то радиохимические процессы приводят преимущественно к появлению свободных радикалов воды, которые в дальнейшем повреждают белки, нуклеиновые кислоты и другие биомолекулы. Отсюда понятно, что ионизирующее излучение не может действовать избирательно.