- •Ландшафтное растениеводство
- •1. Основные тенденции изменения глобальной экологической и продовольственной ситуации
- •2. Структура суши планеты земля
- •2.1. Европа
- •2.2. Азия
- •2.3. Америка
- •2.4. Африка
- •2.5. Австралия и Океания
- •3. Структура земельного фонда планеты земля
- •1. Площадь земли и пашни на континентах, млн./га
- •2. Площадь земли и пашни в странах мира, млн./га
- •4. Население стран мира
- •3. Прогноз фао о динамике населения стран мира
- •4. Национальный состав населения Украины (2001 г.)
- •6. Растения в жизни человека
- •8. Нормы потребления продуктов населением
- •10. Основы биологизации и ландшафтизации инновационных агротехнологий
- •10. Количество ферм, производящих экологически чистую
- •11. Выращивание растений без вирусных инфекций
- •13. Площадь посева и урожайность сельскохозяйственных культур в мире
- •13.1. Зерновые культуры мира
- •13.2. Площади посева, урожайность, производство, а также экспорт и импорт зерновых странами мира
- •12. Экспорт и импорт зерновых странами мира, т
- •13. Площадь посева и урожайность сельскохозяйственных культур
- •14. Научные основы, составные компоненты и перспективы развития агротехнологий
- •14.1. Теоретические основы обработки почвы
- •14.2. Выбор почвообрабатывающих орудий и скорость их движения
- •14.3. Восстановление земель и почв
- •14.4. Применение удобрений
- •14.5. Азотфиксация
- •14.6. Защита растений
- •14.7. Орошение
- •14.8. Комплексная механизация и автоматизация
- •14.9. Селекция. Генетически модифицированные организмы
- •14.10. Организационно-экономические основы агротехнологий
- •15. Общие научные основы агротехнологий выращивания зерновых колосовых в западной европе
- •16. Формы растениеводства и виды агротехнологий
- •14. Характеристика технологий возделывания сельско- хозяйственных культур
- •17. Лгроэкологическая специфика украины
- •17.1. Почвы
- •17.2. Климат
- •17.3. Рельеф
- •17.4, Водные ресурсы
- •15. Ьиоклиматические условия (по п.П. Вавилову)
- •17.5. Агроэкологические зоны
- •21. Коэффициенты гумификации растительных остатков и перегноя в пахотном слое чернозема (УкрНии, 1987 г.)
- •22. Среднегодовой размер минерализации гумуса в черном пару чернозема и под некоторыми культурами, т/га
- •18.2. Биогумус (вермикомпост)
- •18.3. Моделирование управления почвенным плодородием
- •18.4. Эрозия и плодородие почвы
- •(УкрНиипа, 1987)
- •18.5. Бонитировка почв
- •18.6. Физические основы плодородия почвы
- •27. Влияние степени эродированности почв
- •28. Агрофизические модели регулируемого плодородия
- •30. Альбедо различных почв и растительных покровов (а.В. Чудновский, 1959)
- •19.1. Этапы органогенеза и экологический эффект времени возобновления весенней вегетации озимой пшеницы
- •32. Фазы развития и этапы органогенеза озимой пшеницы
- •19.2. Структура высоких урожаев озимой пшеницы
- •33. Структура высоких урожаев озимой пшеницы
- •34. Влияние факторов на повышение урожайности сельскохозяйственных культур в сша, %
- •19.3. Технология получения высоких урожаев озимой пшеницы
- •19.4. Приднепровская технология выращивания сильной и твердой озимой пшеницы
- •35. Условные единицы шкалы прибора идк-1
- •37. Основные показатели мягкой и твердой пшеницы для экспортирования
- •38. Типы пшеницы по цвету и стекловидности зерна
- •Твердая озимая пшеница
- •20. Агроценозы и почвы
- •Зернобобовые
- •Корнеплоды
- •Бахчевые
- •Эфирномасличные
- •Табак и махорка
- •21.1. Эколого-ландшафтная пространственная структура Украины
- •22. Ландшафты и агроценозы
- •23. Ландшафтная организация территории и агроценозные провинции
- •Зерновые
- •24. Специфические законы ландшафтного растениеводства
- •25. Экосистемная структура ландшафтного растениеводства
- •41. Коэффициенты динамики биоэнергии
- •29. Ландшафтизация технологий возделывания агроценозов
- •30. Компоненты ландшафтных агротехнологий
- •30.2. Сорные растения — составная часть ландшафтного агроценоза. Типы засоренности
- •43. Типы засоренности
- •30.3. Севосмены вместо севооборотов
- •30.4. Теоретическое обоснование уборки урожая зерновых колосовых
- •30.5. Эозиновый экспресс-метод определения спелости зерна
- •31. Региональные ландшафтные научные центры (станции)
- •46. Прогноз площади леса и древесно-кустарниковых насаждений, % к площади суши
- •32. Обобщения и прогнозы
- •Основные тенденции изменения глобальной экологической и продовольственной ситуации 8
- •Растения в жизни человека 49
- •Площадь посева и урожайность сельскохозяйственных культур в
- •15. Общие научные основы агротехнологий выращивания зерновых колосовых в Западной Европе 129
- •31. Региональные ландшафтные научные центры (станции)
- •49000, М. Дніпропетровськ, пр. К. Маркса, 60
14.4. Применение удобрений
Согласно данным ФАО в расчете на 1 га пашни в мире вносят 98 кг по д.в. минеральных удобрений с колебаниями по странам от 8,0 кг (Казахстан) до 430 кг д.в. (Япония). Высокие дозы минеральных удобрений вносят в Великобритании (343 кг д.в.), Китае (319 кг д.в.), Германии (258 кг д.в.), Италии (220 кг д.в.). В России вносят лишь 32 кг д.в. минеральных удобрений, в Украине — 24.
В связи с биологизацией и ландшафтизацией расте-ииенодства в мире предусматривается коренное изменение в химизации агротехнологий, переход на производство экологически чистых удобрений и препаратов для защиты растений, строго дозированного их использования с учетом фитосанитарного мониторинга. Обращается внимание на необходимость повышения их эффективности, качества продукции, усовершенствования приемов и способов применения искусственных удобрений и пестицидов.
По нормативам ФАО на душу населения необходимо вносить минимум 30 кг ИРК при широком использовании местных органических удобрений, сидератов и др. Только при этом возможно повышение урожайности сельскохозяйственных культур в 2-3 раза.
14.5. Азотфиксация
Ежегодно при возделывании сельскохозяйственных растений в мире используется до 140 млн. т азота за счет фиксации его из воздуха.
В Украине и за рубежом ведутся широкие исследования, связанные с повышением эффективности нитраги-нации (инокуляции) семян. Создаются новые формы ино-кулянтов, разрабатываются экономичные способы их внесения. Особое внимание уделяется выведению высокоэффективных штаммов азотфиксирующих бактерий рода ризобиум методами аналитической селекции, мутагенеза и генной инженерии практически для всех бобовых растений. Установлена способность бактерий азоспирилл, обитающих в ризосфере растений семейства мятликовых, пасленовых, сельдерейных усваивать азот атмосферы. Изготовленные на основе выделенных бактерий инокулянты придают азотфиксирующую способность растениям указанных семейств. Считают, что при благоприятных усло-
виях зерновые культуры за счет этого источника смогут удовлетворить свою потребность в азоте на 17—40%.
В настоящее время в сельском хозяйстве широко применяются препараты клубеньковых бактерий, усиливающих азотфиксацию. Впервые такой препарат (нитрагин) был получен в 1896 году Ф. Ноббе и Л. Гильтнером. В препарате содержалась смесь культур клубеньковых бактерий наиболее распространенных видов бобовых.
Уже создано более 30 высокоэффективных штаммов клубеньковых бактерий. Применяют три вида нитрагина: почвенный нитрагин, сухой нитрагин, ризоторфин. Наиболее эффективен ризоторфин, используемый для инокуляции — обработки перед посевом семян бобовых растений. Ризотор^ид— это чистая культура клубеньковых бактерий, поддерживаемых в активном состоянии на специально подготовленном торфяном материале — носителе. В одном грамме ризоторфина содержится не менее 1 млрд. клеток медленно развивающихся бактерий, применяемых для бактеризации семян гороха, вики, сои, люцерны и других культур. Ризоторфин усиливает образование клубеньков, улучшает азотное питание бобовых растений, повышает устойчивость к заболеваниям, оказывает положительное влияние на плодородие и структуру почвы.
Каждой бобовой культуре соответствует своя группа бактерий. Например, бактерии клевера не влияют на горох. Применение ризоторфина дает эффект на всех бобовых^ культурах, особенно на сбё и люцерне. Средние прибавки составляют 9-10 ц/га сена многолетних бобовых трав, 2-3 ц/га зерна и 30-60 ц/га зеленой массы гороха.
Ризоторфин не только повышает урожай, но и улучшает его качество за счет увеличения содержания протеина. Так, дополнительный сбор протеина составляет для сои — 160-540 кг/га, гороха — 50-220, люцерны — 100-300 кг/га.
БОЛЬШОЙ интерес, как отмечалось, вызывает недавно открытое явление так называемой ассоциативной азот-фиксации, когда бактерии живут не в клубеньках бобовых культур, а на поверхности корней, в том числе и таких, как пшеница, кукуруза, рожь, сорго, просо, многие технические культуры и кормовые травы. Процесс азотфиксации у бактерий, обитающих на корнях небобовых растений, идет слабее, чем у клубеньковых. По данным Института растениеводства России, урожай картофеля и кормового сорго при внесении ассоциативных азотфиксаторов возрастает на 15%.
В азотфиксирующих системах очень важен и второй компонент — само высшее растение. Необходимо вести селекцию на его способность лучше использовать биологический азот. Так, выявлены формы растений с активностью азотфиксации в 2-2,5 раза выше, чем у контрольных сортов.
Азотфиксирующие бактерии вызывают у многих растений ответную реакцию: начинают усиленно вырабатывать аскорбиновую кислоту и каротин, что способствует повышению качества урожая.
Основные симбиотические свойства клубеньковых бактерий заключены в особых структурах — плазмидах, способных переходить из клеток одних видов бактерий в клетки других. Это открывает широкие возможности для генной инженерии, переноса плазмид в другие почвенные микроорганизмы и на их основе конструировать штаммы с заранее заданными свойствами.
Нитрогенезная активность азотфиксирующих бактерий контролируется нифопероном, включающим 17-18 отдельных генов. Недавно появилось сообщение об успешном переносе нифоперона из клубеньковых бактерий в геном сои. Такие растения способны фиксировать атмосферный азот и не нуждаются в азотных удобрениях. Пе-
98
ренос кластера генов, контролирующих фиксацию атмосферного азота в геном растений, особенно зерновых и технических принципиально изменил бы экологическую ситуацию.
Большой интерес представляет получение путем гибридизации таких штаммов азотфиксирующих бактерий, которые оказались бы в состоянии вступать в симбиоти-ческую связь с зерновыми и техническими культурами.
Интересные данные при изучении экологического эффекта от применения азотфиксаторов получены в УкрНИИ сельскохозяйственной микробиологии. Использование симбиотических азотфиксаторов под бобовые культуры позволило дополнительно накопить азота до 53 кг/га, а ассоциативных — 10-15 кг/га. Препараты, применяемые для обработки семян перед посевом, позволяют за счет повышения фиксации атмосферного азота увеличить урожайность на 15-20% и более.
