
- •1. Конструктивные схемы бескаркасных зданий
- •2. Конструктивные схемы каркасных зданий
- •3. Конструктивные схемы зданий с неполным каркасом
- •Обеспечение строительных площадок энергоресурсами
- •Типы электростанций.
- •Железобетонные перекрытия. Монолитные перекрытия. Перекрытия по железобетонным балкам.
- •Железобетонные перекрытия
- •Сборные железобетонные перекрытия
- •Перекрытия по железобетонным балкам
- •Монолитные перекрытия
- •Горячее водоснабжение
- •Конструкции покрытий промышленных зданий с кровлями из рулонных и мастичных материалов
- •Водопонижение иглофильтрами
- •Глубинное водопонижение
- •Открытый водоотлив
- •[Править]Порядок ремонта
- •Состав и содержание ппр на отдельный вид технически сложных работ
- •[Править]Основные элементы системы водоснабжения
- •[Править]Классификация систем водоснабжения
- •Схемы городского водоснабжения
- •[Править]Общие сведения
- •[Править]История
- •[Править]Эффективность
- •[Править]Условный кпд тепловых насосов
- •[Править]Типы тепловых насосов
- •[Править]Типы промышленных моделей
- •[Править]Отбор тепла от воздуха
- •[Править]Отбор тепла от горной породы
- •[Править]Отбор тепла от грунта
- •[Править]Непосредственный теплообмен dx
- •[Править]Разное
- •[Править]Отбор тепла от водоёма
- •[Править]Преимущества и недостатки
- •[Править]Перспективы
- •[Править]Ограничения применимости тепловых насосов
- •[Править]cop
- •[Править]Цели
- •[Править]История кондиционирования воздуха
- •[Править]Способы кондиционирования воздуха [править]Цикл охлаждения
- •[Править]Контроль влажности воздуха
- •[Править]Испарительные охладители
- •[Править]Современное кондиционирование воздуха
- •1. Пособие — руководство для тех, кто ищет энергоэффективные решения
- •2. Способы уменьшения потребности в тепловой энергии
- •2.1. Уменьшение тепловой мощности системы отопления
- •2.1.1. Структура тепловой мощности
- •2.1.2. Уменьшение роли надбавок
- •2.1.3. Уменьшение тепловых потерь ограждающими конструкциями
- •2.1.4. Уменьшение тепловых потерь с вентиляционным воздухом
- •2.1.5. Возможная структура тепловой мощности
- •2.2. Рациональное потребление тепла отопительной системой
- •2.2.1 Рычаги управления рациональным теплопотреблением
- •2.2.2. Коммерческий учет теплопотребления
- •2.2.3. Автоматическое регулирование теплового потока
- •2.3. Оптимальный воздухообмен
- •2.4. Сокращение энергоемкости систем водоснабжения
- •3. Рациональные тепловые пункты
- •3.1. Основы рационального подхода к проектированию итп
- •3.2. Теплообменники со сверхвысокой плотностью теплового потока
- •3.3. Приготовление теплоносителя
- •Типы предлагаемых холодильных установок: Холодильные установки акк и акр на базе импортных комплектующих
- •Сплит-системы TechnoBlock (Италия) и Polair (Россия)
- •Моноблоки TechnoBlock (Италия) и Polair (Россия)
- •Класс (маркировка) энергосбережения кондиционеров (сплит систем)
- •Правила учета тепла
- •Цели учета тепловой энергии
- •Обязательные требования к средствам учета тепла
- •Требования к потребителю тепловой энергии
- •Снижаем расходы на тепло
- •[Править]Государственное регулирование
Типы электростанций.
ТЭС (тепловые) 66–68%
ТЭС – тепловые, вырабатывают электрическую энергию; ТЭЦ – электроцентрали, вырабатывающие электроэнергию + тепло (расстояние передачи тепла не более 20-30 км); ГРЭС – государственные районные электростанции.
Уголь, газ, мазут, торф => по этому можно строить везде.
– быстро строят, и строительство обходится дешевле, чем строительство ГЭС и АЭС; – разнообразное сырьё; – способность вырабатывать электроэнергию без сезонных колебаний; – КПД – 33%. |
ГЭС (гидравлические) 17–18% 1.Виды электростанций: ГЭС – гидроэлектростанция на равнинных и горных реках; ГАЭС -гидроаккумулирующая станция (Загорская); ПЭС – приливная электростанция (высоту приливов и отливов).
2.Сырьё: Вода равнинных и горных рек. Движение воды во время приливов и отливов. 3.Качественная характеристика.
Преимущества: – высокий КПД – 92-94%; – экономичны, простота управления; – обслуживает сравнительно немногочисленный персонал; – маневренны при изменении нагрузки выработки электроэнергии; – длительный срок эксплуатации (до 100 и более лет); – низкая себестоимость электроэнергии; – ГЭС – комплексное гидротехническое сооружение; – регулирует стоки; – плотина используется для транспортных связей между берегами (таблица); – около них образуются промышленные центры (Тольятти, Набережные Челны, Балаково); – процесс выработки электроэнергии не сопровождается загрязнением окружающей среды; |
АЭС (атомные) 14–15%
АЭС – атомная электростанция, вырабатывает электроэнергию; АЭЦ – атомная электроцентраль (тепло + энергия).
Ядерное топливо (плутоний и уран). При расходе 1 кг урана образуется энергии как при сгорании 2500 кг угля.
– на 20-30 тонн ядерного топлива АЭС работает несколько лет; – в высшей степени концентрированное и транспортабельное топливо; – маневренность; – размещение (там, где нужна электроэнергия, но нет других источников сырья (мало)). – КПД – 80%; – дешёвая электроэнергия; – сравнительно небольшие затраты при строительстве; – работа станции не приводит к усилению парникового эффекта. – процесс выработки электроэнергии не сопровождается загрязнением окружающей среды; |
Недостатки: Несмотря на неоспоримые преимущества электростанций в добыче энергии перед топливной промышленностью и необходимостью их существования и востребованность, у них всё же существует целый ряд серьёзных проблем и недостатков, требующих внимательного изучения и решения. |
||
1. Работают на невозабновимых ресурсах. 2. Дают много отходов (самые чистые на природном газе). 3. Режим работы меняется медленно (для разогрева котла необходимо 2-3 суток). 4. Энергия дорогая, так как для эксплуатации станции, добычи и транспортировки топлива требуется много людей.
Канаковская ГРЭС Костромская ГРЭС Сургутская ГРЭС Рефтинская ГРЭС Ириклинская ГРЭС Берёзовская ГРЭС Заинская ГРЭС |
1. Длительное и дорогое строительство (15-20 лет). 2. Строительство сопровождается затоплением огромных площадей плодородных земель. В зоне затопления оказываются сотни деревень и даже городов. 3. Водохранилища изменяют речной сток, климат. 4. Вода в водохранилищах быстро загрязняется, так как идёт накопление отходов. Прошедшая через турбину вода становится «мёртвой», поскольку в ней погибают микроорганизмы. 5. Проявление «капризности» по выбору места строительства.
4. География электростанций. По карте атласа, по 7 станций (определяем) Саяно-Шушенская(6400 МВт) Красноярская (6000 МВт) Иркутская Волгоградская Братская Бурейская Загорская ГАЭС |
1. АЭС таят в себе большой разрушительный потенциал: крупная авария способна вывести из хозяйственного использования тысячи километров территории (Чернобыль). 2. Проблема утилизации ядерного отработанного топлива в специальных могильниках.
Кольская – Полярные Зори Ленинградская–Сосновый бор Калининская - Удомля Курская – Курчатов Балаковская Смоленская – Десногорск Белоярская – Заречный |
Деформационные швы
Деформационный шов — предназначен для уменьшения нагрузок на элементы конструкций в местах возможных деформаций, возникающих при колебании температуры воздуха, сейсмических явлений, неравномерной осадки грунта и других воздействий, способных вызвать опасные собственные нагрузки, которые снижают несущую способность конструкций. Представляет собой своего рода разрез в конструкции здания, разделяющий сооружение на отдельные блоки и, тем самым, придающий сооружению некоторую степень упругости. С целью герметизации заполняется упругим изоляционным материалом.
В зависимости от назначения применяют следующие деформационные швы: температурные, осадочные, антисейсмические и усадочные.
Температурные швы делят здание на отсеки от уровня земли до кровли включительно, не затрагивая фундамента, который, находясь ниже уровня земли, испытывает температурные колебания в меньшей степени и, следовательно, не подвергается существенным деформациям. Расстояние между температурными швами принимают в зависимости от материала стен и расчетной зимней температуры района строительства.
Отдельные части здания могут быть разной этажности. В этом случае грунты основания, расположенные непосредственно под различными частями здания, будут воспринимать разные нагрузки. Неравномерная деформация грунта может привести к появлению трещин в стенах и других конструкциях здания. Другой причиной неравномерной осадки грунтов основания сооружения могут быть различия в составе и структуре основания в пределах площади застройки здания. Тогда в зданиях значительной протяженности даже при одинаковой этажности могут появиться осадочные трещины. Во избежание появления опасных деформаций в зданиях устраивают осадочные швы. Эти швы, в отличие от температурных, разрезают здания по всей их высоте, включая фундаменты.
Если в одном здании необходимо использовать деформационные швы разных видов, их по возможности совмещают в виде так называемых температурно-осадочных швов.
Антисейсмические швы применяются в зданиях, строящихся в районах, подверженных землетрясениям. Они разрезают здание на отсеки, которые в конструктивном отношении должны представлять собой самостоятельные устойчивые объемы. По линиям антисейсмических швов располагают двойные стены или двойные ряды несущих стоек, входящих в систему несущего остова соответствующего отсека.
Усадочные швы делают в стенах, возводимых из монолитного бетона различных видов. Монолитные стены при твердении бетона уменьшаются в объеме. Усадочные швы препятствуют возникновению трещин, снижающих несущую способность стен. В процессе твердения монолитных стен ширина усадочных швов увеличивается; по окончании усадки стен швы наглухо заделывают.
Для организации и гидроизоляции деформационных швов используют различные материалы: - герметики - замазки - гидрошпонки
Конструктивные схемы перекрытий.