
- •1. Конструктивные схемы бескаркасных зданий
- •2. Конструктивные схемы каркасных зданий
- •3. Конструктивные схемы зданий с неполным каркасом
- •Обеспечение строительных площадок энергоресурсами
- •Типы электростанций.
- •Железобетонные перекрытия. Монолитные перекрытия. Перекрытия по железобетонным балкам.
- •Железобетонные перекрытия
- •Сборные железобетонные перекрытия
- •Перекрытия по железобетонным балкам
- •Монолитные перекрытия
- •Горячее водоснабжение
- •Конструкции покрытий промышленных зданий с кровлями из рулонных и мастичных материалов
- •Водопонижение иглофильтрами
- •Глубинное водопонижение
- •Открытый водоотлив
- •[Править]Порядок ремонта
- •Состав и содержание ппр на отдельный вид технически сложных работ
- •[Править]Основные элементы системы водоснабжения
- •[Править]Классификация систем водоснабжения
- •Схемы городского водоснабжения
- •[Править]Общие сведения
- •[Править]История
- •[Править]Эффективность
- •[Править]Условный кпд тепловых насосов
- •[Править]Типы тепловых насосов
- •[Править]Типы промышленных моделей
- •[Править]Отбор тепла от воздуха
- •[Править]Отбор тепла от горной породы
- •[Править]Отбор тепла от грунта
- •[Править]Непосредственный теплообмен dx
- •[Править]Разное
- •[Править]Отбор тепла от водоёма
- •[Править]Преимущества и недостатки
- •[Править]Перспективы
- •[Править]Ограничения применимости тепловых насосов
- •[Править]cop
- •[Править]Цели
- •[Править]История кондиционирования воздуха
- •[Править]Способы кондиционирования воздуха [править]Цикл охлаждения
- •[Править]Контроль влажности воздуха
- •[Править]Испарительные охладители
- •[Править]Современное кондиционирование воздуха
- •1. Пособие — руководство для тех, кто ищет энергоэффективные решения
- •2. Способы уменьшения потребности в тепловой энергии
- •2.1. Уменьшение тепловой мощности системы отопления
- •2.1.1. Структура тепловой мощности
- •2.1.2. Уменьшение роли надбавок
- •2.1.3. Уменьшение тепловых потерь ограждающими конструкциями
- •2.1.4. Уменьшение тепловых потерь с вентиляционным воздухом
- •2.1.5. Возможная структура тепловой мощности
- •2.2. Рациональное потребление тепла отопительной системой
- •2.2.1 Рычаги управления рациональным теплопотреблением
- •2.2.2. Коммерческий учет теплопотребления
- •2.2.3. Автоматическое регулирование теплового потока
- •2.3. Оптимальный воздухообмен
- •2.4. Сокращение энергоемкости систем водоснабжения
- •3. Рациональные тепловые пункты
- •3.1. Основы рационального подхода к проектированию итп
- •3.2. Теплообменники со сверхвысокой плотностью теплового потока
- •3.3. Приготовление теплоносителя
- •Типы предлагаемых холодильных установок: Холодильные установки акк и акр на базе импортных комплектующих
- •Сплит-системы TechnoBlock (Италия) и Polair (Россия)
- •Моноблоки TechnoBlock (Италия) и Polair (Россия)
- •Класс (маркировка) энергосбережения кондиционеров (сплит систем)
- •Правила учета тепла
- •Цели учета тепловой энергии
- •Обязательные требования к средствам учета тепла
- •Требования к потребителю тепловой энергии
- •Снижаем расходы на тепло
- •[Править]Государственное регулирование
2.1.4. Уменьшение тепловых потерь с вентиляционным воздухом
Нормативный однократный воздухообмен в жилом доме по существу избыточен, особенно в период стояния минимальных температур наружного воздуха, во время которого и рассчитывают тепловую мощность отопительной системы. Опыт других стран подтверждает это (табл. 1).
Сохранение действующего в Украине высокого уровня нормативного воздухообмена связано с ограниченными возможностями систем газоснабжения при пиковых тепловых нагрузках. При низких давлениях газа в газопроводе не удается поддерживать расчетные температуры теплоносителя в системах отопления, и пониженный относительно нормативных значений уровень воздухообмена в некоторой степени сглаживает проблемы, связанные с недостаточными температурами на поверхности отопительных приборов. Теперь уже ясно, что проблемы с газоснабжением в Украине со временем будут усугубляться, и по этой причине вводить у нас европейские нормативы кратности воздухообмена не имеет смысла. Таким образом, уменьшить нормативные потери тепла с вентиляционным воздухом невозможно, если не применить рекуперативную приточно-вытяжную вентиляцию. Рекуперативные теплообменники, в которых происходит обмен теплом между вытяжным и холодным приточным воздухом, широко применяется в центральных системах приточно-вытяжной вентиляции зданий различного назначения. Однако, применение центральных систем вентиляции в многоэтажных жилых домах связано со множеством различных проблем (излишняя энергоемкость, потеря полезной площади, занятой воздуховодами, шум, возможность переноса бактерий, сложность распределения воздуха по помещениям), не позволяющих рекомендовать эти системы к применению в современных проектах. Кардинально решить задачу уменьшения потерь тепла с вентиляционным воздухом в жилых домах возможно, применив новое устройство, получившее название ТеФо (теплая форточка). ТеФо — это устройство, обеспечивающее воздухообмен в комнате и теплообмен между воздухом, покидающим эту комнату, и поступающим в нее свежим воздухом. В основу конструкции ТеФо положены принципы создания теплообменных аппаратов ТТАИ с высокой плотностью теплового потока. Они состоят из тонкостенных трубок периодического профиля, выполненных из нержавеющей стали и собранных, благодаря особой технологии, в чрезвычайно плотный пучок. ТеФо состоит из двух осевых вентиляторов — приточного и вытяжного, встроенных в пластмассовый корпус, и теплообменной поверхности, собранной таким образом, что вытяжной воздух движется по межтрубному пространству, в то время как свежий воздух перемещается по трубкам. Установка ТеФо схематически показана на рис. 3.
Удобнее всего располагать ТеФо под окном или в специальной нише для скрытой установки. Во время теплофизических исследований образцов ТеФо в климатической камере КиевЗНИИЭП при температуре -24 °С в холодном отсеке эффективность теплообмена была зафиксирована на уровне 71–73 %. Последующие натурные испытания при температурах наружного и внутреннего воздуха -26 °С и +18,5 °С и относительной влажности воздуха в помещении 70 % показали, что конденсат, образующийся в контуре вытяжного воздуха на поверхности теплообменных трубок периодического профиля, в осадок не выпадает и свободно уносится наружу. С 2005 г. ТеФо четырех моделей серийно выпускается предприятием «Теплообмен» (г. Севастополь). Технические характеристики аппаратов представлены в табл. 2.