
- •1. Конструктивные схемы бескаркасных зданий
- •2. Конструктивные схемы каркасных зданий
- •3. Конструктивные схемы зданий с неполным каркасом
- •Обеспечение строительных площадок энергоресурсами
- •Типы электростанций.
- •Железобетонные перекрытия. Монолитные перекрытия. Перекрытия по железобетонным балкам.
- •Железобетонные перекрытия
- •Сборные железобетонные перекрытия
- •Перекрытия по железобетонным балкам
- •Монолитные перекрытия
- •Горячее водоснабжение
- •Конструкции покрытий промышленных зданий с кровлями из рулонных и мастичных материалов
- •Водопонижение иглофильтрами
- •Глубинное водопонижение
- •Открытый водоотлив
- •[Править]Порядок ремонта
- •Состав и содержание ппр на отдельный вид технически сложных работ
- •[Править]Основные элементы системы водоснабжения
- •[Править]Классификация систем водоснабжения
- •Схемы городского водоснабжения
- •[Править]Общие сведения
- •[Править]История
- •[Править]Эффективность
- •[Править]Условный кпд тепловых насосов
- •[Править]Типы тепловых насосов
- •[Править]Типы промышленных моделей
- •[Править]Отбор тепла от воздуха
- •[Править]Отбор тепла от горной породы
- •[Править]Отбор тепла от грунта
- •[Править]Непосредственный теплообмен dx
- •[Править]Разное
- •[Править]Отбор тепла от водоёма
- •[Править]Преимущества и недостатки
- •[Править]Перспективы
- •[Править]Ограничения применимости тепловых насосов
- •[Править]cop
- •[Править]Цели
- •[Править]История кондиционирования воздуха
- •[Править]Способы кондиционирования воздуха [править]Цикл охлаждения
- •[Править]Контроль влажности воздуха
- •[Править]Испарительные охладители
- •[Править]Современное кондиционирование воздуха
- •1. Пособие — руководство для тех, кто ищет энергоэффективные решения
- •2. Способы уменьшения потребности в тепловой энергии
- •2.1. Уменьшение тепловой мощности системы отопления
- •2.1.1. Структура тепловой мощности
- •2.1.2. Уменьшение роли надбавок
- •2.1.3. Уменьшение тепловых потерь ограждающими конструкциями
- •2.1.4. Уменьшение тепловых потерь с вентиляционным воздухом
- •2.1.5. Возможная структура тепловой мощности
- •2.2. Рациональное потребление тепла отопительной системой
- •2.2.1 Рычаги управления рациональным теплопотреблением
- •2.2.2. Коммерческий учет теплопотребления
- •2.2.3. Автоматическое регулирование теплового потока
- •2.3. Оптимальный воздухообмен
- •2.4. Сокращение энергоемкости систем водоснабжения
- •3. Рациональные тепловые пункты
- •3.1. Основы рационального подхода к проектированию итп
- •3.2. Теплообменники со сверхвысокой плотностью теплового потока
- •3.3. Приготовление теплоносителя
- •Типы предлагаемых холодильных установок: Холодильные установки акк и акр на базе импортных комплектующих
- •Сплит-системы TechnoBlock (Италия) и Polair (Россия)
- •Моноблоки TechnoBlock (Италия) и Polair (Россия)
- •Класс (маркировка) энергосбережения кондиционеров (сплит систем)
- •Правила учета тепла
- •Цели учета тепловой энергии
- •Обязательные требования к средствам учета тепла
- •Требования к потребителю тепловой энергии
- •Снижаем расходы на тепло
- •[Править]Государственное регулирование
2. Способы уменьшения потребности в тепловой энергии
2.1. Уменьшение тепловой мощности системы отопления
2.1.1. Структура тепловой мощности
Нормы расчета тепловой мощности системы отопления [2] требуют учета следующих факторов:
а) величины теплового потока через ограждающие конструкции здания; б) потерь теплоты на нагревание вентиляционного воздуха; в) дополнительных потерь теплоты участками наружных стен, расположенными непосредственно за радиаторами, а также трубопроводами, прокладываемыми в неотапливаемых помещениях; г) дополнительного теплового потока от радиаторов с фактической поверхностью теплоотдачи, превышающей расчетное значение в связи с округлением числа секций; д) нормативной надбавки к величине тепловой мощности, введенной в связи с требованием об установке на подводке к отопительному прибору термостатического клапана.
Влияние каждого из этих факторов на величину тепловой мощности системы отопления различно, и для многоэтажных жилых домов, проектируемых согласно действующим нормам теплозащиты [3], это влияние иллюстрируется рис. 1.
2.1.2. Уменьшение роли надбавок
Менее всего влияют на тепловую мощность системы отопления факторы В и Г, составляющие в сумме около 9%. Уменьшить влияние этих факторов можно путем усиленной изоляции теплопроводов, прокладываемых в неотапливаемых помещениях, а также при установке тепловых экранов-отражателей за радиаторами, установленными у наружной стены. Кроме того, рекомендуется применять отопительные приборы, смежные типоразмеры которых мало отличаются друг от друга по поверхности теплоотдачи. Например, обогрев помещений секционными радиаторами с номинальной тепловой мощностью одной секции 160 Вт потребует меньше тепла, чем потребовалось бы в том случае, если бы в тех же помещениях устанавливались радиаторы с более мощными (например, 185 Вт) секциями. Как правило, радиаторы, составленные из менее мощных секций, будут дороже, но, несмотря на это, они находят все более широкое применение, и более высокая их эффективность наряду с улучшенным дизайном этому способствуют. Рациональное проектирование позволит сократить влияние факторов В и Г в 2-2,5 раза. Более заметную роль в формировании величины тепловой мощности отопительной системы играет фактор Д. Десятипроцентная надбавка к теплопотерям, связанная с применением радиаторных термостатических клапанов (РТК), была введена в украинские нормы [2] одновременно с требованием об обязательном использовании РТК при проектировании систем отопления. Логика этой надбавки исходила из стремления предоставить радиаторным термостатам более широкое поле активной деятельности. Если бы эта надбавка не была введена, то при совершенно неудовлетворительной (в то время) нормативной температуре воздуха помещения 18 °С все термостатические клапаны в процессе эксплуатации постоянно оставались бы в статически устойчивом положении «открыто». Надо сказать, что десятипроцентная надбавка к теплопотерям практически мало что изменила. При отсутствии квартирных теплосчетчиков, жители по-прежнему предпочитают регулировать температуру в своих жилищах свежим воздухом из окна, в то время как РТК остаются в открытом положении. Теперь, когда нормативная температура для большинства помещений жилого дома установлена на уровне 20–22 °С, нормативную надбавку к теплопотерям на РТК следовало бы отменить. Нельзя же, в самом деле, создавать условия для обязательного перерасхода тепла в надежде, что работой РТК этот перерасход, возможно, будет устранен. При таком подходе, ни о каком энергосбережении посредством РТК не может идти речь. Но, пока нормы не изменены, фактор Д остается незыблемым. Вместе с тем, новыми нормами [1] уточнено, что в некоторых случаях РТК проектировать не нужно. Это касается радиаторов в лестничных клетках и в некоторых помещениях вспомогательного назначения. Особо следует отметить, что этими нормами в жилище второй категории (социальном) допускается проектировать однотрубные системы отопления с ручными полнопроходными шаровыми кранами в радиаторных узлах с замыкающими участками при условии, что эти системы будут запроектированы с пофасадным автоматическим регулированием. Это положение новых норм позволит строить более дешевое жилище для малообеспеченных граждан, а необходимый энергосберегающий эффект при этом будет достигнут средствами не менее эффективными, чем РТК, но простыми и более надежными. Стоит еще раз напомнить, что для помещений, в которых отсутствуют РТК, десятипроцентную надбавку к теплопотерям вводить не нужно.