
- •Глобальные проблемы в гис
- •Проблема использования различных видов атрибутивных данных в гис
- •Проблема использования различных видов картографических данных в гис (хуевато)
- •Объектно-ориентированное моделирование, виды моделей и их применение в гис
- •5 Геодезическая, топоцентрическая и изометрическая системы координат в гис
- •6 Геоцентрическая, сферическая и локальная системы координат в гис
- •7. Определение картографических проекций, их взаимосвязь с геодезической системой
- •8. Виды классификаций картографических проекций
- •Проекции с параллелями постоянной кривизны
- •9. Картографические проекции, свойства и их виды по характеру искажений
- •10 Картографические проекции, свойства и их виды по форме картографической сетки
- •11 Элементы бесконечно малой сферической трапеции, их отображение на плоскости
- •12 Понятие масштабов в картографических проекциях, их виды
- •13 Виды искажений картографических проекций, их основные показатели
- •Искажение длин линий (расстояний)
- •Искажение углов
- •Искажение форм
- •Искажение площадей
- •14 Методы преобразования картографических проекций в гис
- •15 Основные факторы и способы выбора картографических проекций
- •16 Описание, свойства и область применения в гис различных видов цилиндрических проекций
- •17 Описание, свойства и область применения в гис различных видов азимутальных проекций
- •18 Описание, свойства и область применения в гис различных видов конических проекций
- •19 Описание, свойства и область применения в гис проекций Гаусса-Крюгера и utm
- •20 Алгоритм решения задачи поиска наилучшей проекции для гис
Проблема использования различных видов картографических данных в гис (хуевато)
Тематические данные хранятся в ГИС в виде таблиц, поэтому проблем с их хранением и организацией в базах данных не возникает. Наибольшие проблемы представляет хранение и визуализация графических данных. Основой визуального представления данных при помощи ГИС-технологий служат специальные графические модели. Они подразделяются на векторные и растровые модели.
В общем случае модели пространственных (координатных) данных могут иметь векторное или растровое (ячеистое) представление, содержать или не содержать топологические характеристики. Этот подход позволяет классифицировать модели по трем типам:
растровая модель;
векторная нетопологическая модель;
векторная топологическая модель.
Все эти модели взаимно преобразуемы. Тем не менее, при получении каждой из них необходимо учитывать их особенности. В ГИС форме представления координатных данных соответствуют два основных подкласса моделей - векторные и растровые (ячеистые или мозаичные). Возможен класс моделей, которые содержат характеристики, как векторов, так и мозаик. Они называются гибридными моделями.
Векторные модели
Векторные модели широко применяются в САПР. Они строятся на векторах, занимающих часть пространства в отличие от занимающих все пространство растровых моделей. Это определяет их основное преимущество - требование на порядки меньшей памяти для хранения и меньших затрат времени на обработку и представление, а главное более высокая точность позиционирования и представления данных.
При построении векторных моделей объекты создаются путем соединения точек прямыми линиями, дугами окружностей, полилиниями. Площадные объекты - ареалы задаются наборами линий.
Векторные модели используются преимущественно в транспортных, коммунальных, маркетинговых приложениях ГИС. Системы ГИС, работающие в основном с векторными моделями, получили название векторных ГИС.
В реальных ГИС имеют дело не с абстрактными линиями и точками, а с объектами, содержащими линии и ареалы, занимающими пространственное положение, а также со сложными взаимосвязями между ними. Поэтому полная векторная модель данных ГИС отображает пространственные данные как совокупность следующих основных частей:
геометрические (метрические) объекты (точки, линии и полигоны);
атрибуты - признаки, связанные с объектами;
связи между объектами.
В векторной форме легче осуществляются операции с линейными и точечными объектами, например, анализ сети - разработка маршрутов движения по сети дорог, замена условных обозначений.
В растровых форматах точечный объект должен занимать целую ячейку. Это создаст ряд трудностей, связанных с соотношением размеров растра и размера объекта.
Что касается точности векторных данных, то здесь можно говорить о преимуществе векторных моделей перед растровыми, так векторные данные могут кодироваться с любой мыслимой степенью точности, которая ограничивается лишь возможностями метода внутреннего представления координат. Обычно для представления векторных данных используется 8 или 16 десятичных знаков (одинарная или двойная точность).
Только некоторые классы данных, получаемых в процессе измерений, соответствуют точности векторных данных. Это данные, полученные точной съемкой (координатная геометрия); карты небольших участков, составленные по топографическим координатам и политические границы, определенные точной съемкой.
Не все природные явления имеют характерные четкие границы, которые можно представить в виде математически определенных линий. Эго обусловлено динамикой явлений или способами сбора пространственной информации. Почвы, типы растительности, склоны, место обитания диких животных - все эти объекты не имеют четких границ.
Обычно линии на карте имеют толщину 0,4 мм и, как часто считается, отражают неопределенность положения объекта. В растровой системе эта неопределенность задается размером ячейки. Поэтому следует помнить, что в ГИС действительное представление о точности дают размер растровой ячейки и неопределенность положения векторного объекта, а не точность координат.
Сравнение растровой и векторной моделей