Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические модели и расчет с.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
471.04 Кб
Скачать

1.4 Проверка адекватности модели

Проверка работоспособности модели производится путем сравнения графиков изменения уровня воды в водосборнике, полученных моделированием, с аналогичным графиками, известными либо из литературы, либо полученных на горных предприятиях.

1.5 Определение режимов работы объекта

Проверяется работа модели при водопритоках:

1) режим нормального водопритока - Qнорм = Qп1 =360 м3/ч,

2) режим максимального водопритока - Qп2 = 430 м3/ч.

Зададимся уровнем расположения датчиков в водосборнике (см. табл.1).

Таблица 1. Уровни расположения датчиков в водосборнике.

Датчик

Высота размещения датчика

(от дна водосборника) H, м

H,

м

Датчик аварийного уровня

5

0.9

Датчик повышенного уровня

4.1

0,6

Датчик верхнего уровня

3,5

2,5

Датчик нижнего уровня

1

1

Глава 2. Построение математической модели

2.1 Выбор класса модели и языков описания

Система дискретна, процесс наполнения и откачки воды из водосборника непрерывен. Соответственно, модель рассматриваемого блока системы дискретна, модель изменения уровня воды в водосборнике непрерывна. Обе модели детерминированные. Объединённая модель должна состоять из этих двух частей.

Язык описания – термины теории конечных автоматов и дифференциальные (алгебраические) уравнения.

2.2 Составление уравнений, описывающих заданные режимы работы объекта

Изменение уровня воды в водосборнике может быть описано уравнением:

(2.1)

где h – уровень воды в водосборнике, t – время, QП – величина водопритока,

QН – производительность насосов, S – площадь поверхности водосборника.

Тогда:

(2.2)

где h0 – начальный уровень воды.

Если водоприток стабилен, то уравнение (2.3) примет вид:

(2.3)

Представив моделируемый блок в виде конечного автомата, мы переходим от непрерывной модели к дискретной.

Математической моделью дискретного устройства является абстрактный автомат, определяемый как шестикомпонентный вектор S (A, Z, W, , ), где:

А =(а1,…,аm,…,аМ) – множество внутренних состояний автомата, состоящее из конечного числа элементов (алфавит состояний);

Z =(z1,…,zf,…,ZF) – множество входных сигналов (входной алфавит);

W = (w1,…,wg,…,WG) – множество выходных сигналов (выходной алфавит);

- множество функций переходов, приводящих некоторому состоянию и входному сигналу в соответствие новое состояние автомата (под действием сигнала автомат переходит из одного состояния в другое),

aS = (am; zf), аS А;

аS-состояние автомата.

λ- множество функций выходов, ставящих выходной сигнал в соответствие состоянию автомата и входному сигналу,

wg = λ(an; zk),

а1 А- начальное состояние автомата.

Под алфавитом здесь понимается непустое множество попарно различных символов. Элементы алфавита называются буквами, а конечная упорядоченная последовательность букв - словом в данном алфавите.

Автомат имеет один вход и один выход. Автомат работает в дискретном времени, принимающем целые неотрицательные значения t=0, l, 2.... В каждый момент t дискретного времени автомат находиться в некотором состоянии a(t) из множества состояний автомата, причем в начальный момент t=0 он всегда находиться в начальном состоянии a(0)=a1.

В момент t, будучи в состоянии a(t), автомат способен воспринять на входе букву входного алфавита z(t) Z. В соответствии с функцией выходов он выдаст в тот же момент времени t букву выходного алфавита w(t)=λ (a(t), z(t)) и в соответствии с функцией переходов перейдет в следующее состояние a(t+l)=δ (a(t), z(t)); a(t) A, w(t) W. Смысл понятия абстрактного автомата состоит в том, что он реализует некоторое отображение множества слов выходного алфавита W. Иначе, если на вход автомата, установленного в начальное состояние a1, подавать буква за буквой некоторую последовательность букв входного алфавита z(0), z(l), z(2),... -входное слово, то на выходе автомата будут последовательно появляться буквы выходного алфавита w(0), w(l), w(2),... - выходное слово. Относя к каждому входному слову соответствующее выходное слово, мы получим отображение φ, индуцированное абстрактным автоматом.

Таким образом, на уровне абстрактной теории понятие "работа автомата" понимается как преобразование входных слов в выходные слова. Понятие состояния в определении автомата введены в связи с тем, что часто возникает необходимость в описании поведения систем, выходы которых зависят не только от состояния входов в данный момент времени, но и от некоторой предыстории, то есть от сигналов, которые поступали на входы системы ранее. Состояния как раз и соответствуют некоторой памяти о прошлом, позволяя устранить время как явную переменную и выразить выходной сигнал как функцию состояния и входа в данный момент времени.

На практике наибольшее распространение получили 2 класса автоматов -автоматы Мили и Мура. В качестве модели принимаем асинхронный автомат Мура, который описывается следующими уравнениями:

a(t)=δ(z(t), a(t-l)); (2.4)

w(t)=λ(a(t)), (2.5)

где t=0, 1, 2..., a(t) - состояние автомата; z(t), w(t) - входной и выходной сигналы; δ и λ - функции переходов и выходов. Автомат называется конечным, если конечны множества A, Z и W. Чтобы задать конечный автомат S, необходимо описать все компоненты вектора S = (А, Z, W, δ, λ, a1), то есть входной и выходной алфавиты и алфавит состояний, а также функции переходов и выходов. Среди множества состояний необходимо выделить состояние a1, в котором автомат находиться в момент t=0. Существует несколько способов задания работы автомата, но наиболее часто используются табличный и графический.

Так как в автомате Мура выходной сигнал зависит только от состояния, автомат Мура задается одной отмеченной таблицей переходов, в которой каждому ее столбцу приписаны состояния аm и выходной сигнал wg =λ (am), соответствующий этому состоянию.

Граф автомата - ориентированный граф, вершины которого соответствуют состояниям, а дуги - переходам между ними. Две вершины графа автомата am и as (исходное состояние и состояние перехода) соединяются дугой, направленной от am к as , если в автомате имеется переход из am в as , то есть если as = δ(am, zf) при некотором zf Z. Дуге (am , as) графа автомата приписывается входной сигнал zf и выходной сигнал wg =δ (am , as), если он определен, и ставится прочерк в противном случае. Если переход автомата из состояния am в состояние as происходит под действием нескольких входных сигналов, то дуге (аm , as) приписываются все эти входные и соответствующие выходные сигналы. При описании автомата Мура в виде графа выходной сигнал wg =λ(am) записывается внутри вершины am или рядом с ней.

В данной работе рассматриваются только детерминированные автоматы, у которых выполнено условие однозначности переходов: автомат, находящийся в некотором состоянии, под действием любого входного сигнала не может перейти более чем в одно состояние. Автомат, заданный таблицей переходов, всегда детерминированный, так как на пересечении столбца am и строки zf записывается только одно состояние as =δ(am, zf), если переход определен, и ставится прочерк, если функция δ на паре (am, zf) не определена. Применительно к графическому способу задания автомата условия однозначности означает, что в графе автомата из любой вершины не могут выходить две и более дуги, отмеченные одним и тем же входным сигналом. Выделение в множестве состояний начального состояния объясняется чисто практическими соображениями, связанными с возникающей часто необходимостью фиксировать условия начала работы дискретного устройства. Многие же задачи на уровне абстрактного автомата можно решать, описывая автомат пятеркой S=(A, Z, W, δ, λ,). Автомат S=(A, Z, W, δ, λ, a1), представляемый шестеркой, то есть с выделенным начальным состоянием, называется инициальным.

Состояние as автомата S называется устойчивым, если для любого входа zf Z такого, что δ(am, zf)= as, имеет место δ(as,zf)= as. Это означает, что если автомат перешел в некоторое состояние под действием входного сигнала zf,, то выйти из этого состояния он может только при поступлении на его вход другого, отличного от zf входного сигнала. Автомат S называется асинхронным, если каждое его состояние as e А устойчиво. Необходимо заметить, что все построенные на практике автоматы - асинхронные, и устойчивость их состояний обеспечивается тем или иным способом, например введением сигналов синхронизации. Очевидно, что если в таблице переходов асинхронного автомата некоторые состояния as записаны на пересечении строки zf и столбца am (m S), это состояние обязательно должно встретиться в этой же строке в столбце as. В графе асинхронного автомата, если в некоторое состояние есть переходы из других состояний под действием каких-то сигналов, то в вершине аs должна быть петля, отмеченная символами тех же входных сигналов.