
- •Содержание
- •Введение
- •Общие указания к выполнению лабораторных работ
- •Правила оформления отчета по лабораторным работам.
- •Требования к допуску, выполнению и защите лабораторных работ.
- •Лабораторная работа 1–01 “Изучение основных измерительных приборов и определение линейных размеров твердых тел”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерений:
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1–02 “Определение плотности образца и вычисление погрешностей косвенных измерений”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-03 “Изучение погрешностей измерения ускорения свободного падения с помощью математического маятника”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-04 “Статистическая обработка результатов эксперимента. Случайные погрешности результатов наблюдений интервалов времени”
- •Методика измерений
- •Контрольные вопросы.
- •Используемая литература.
- •Лабораторная работа 1-05“Исследование упругого соударения шаров”
- •Теоретическое введение
- •Методика измерений
- •Порядок выполнения лабораторной работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Лабораторная работа 1-06 “Определение коэффициента трения твердых тел”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа 1-07 “Определение момента инерции тела с помощью наклонной плоскости”.
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-08 “Исследование динамики вращательного движения на маятнике Обербека”
- •Теоретическое введение
- •Экспериментальная часть.
- •Методика измерения
- •Замечание 1: погрешность времени рассчитывается по стандартной методике расчета погрешностей случайной величины:
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-09 “Определение момента инерции маховика”.
- •Теоретическое введение
- •Методика измерений
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемые литература
- •Лабораторная работа 1-10 “Маятник Максвелла”
- •Теоретическое введение
- •Экспериментальная часть
- •Экспериментальная установка
- •Порядок выполнения работы
- •Расчёт погрешностей:
- •Контрольные вопросы:
- •Используемая литература:
- •Лабораторная работа 1-11 “Изучение характеристик механического гироскопа”
- •Теоретическое введение
- •Экспериментальная часть
- •Методика измерений
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-12 “Определение коэффициента вязкости воздуха капиллярным методом”
- •Теоретическое введение
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-13 “Определение динамического коэффициента вязкости”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-14 “Определение коэффициента вязкости жидкости по методу Пуазейля”
- •Теоретическое введение
- •Методика определения
- •Лабораторная установка
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы.
- •Используемая литература.
- •Лабораторная работа 1-15 “Определение коэффициента вязкости жидкости методом Стокса”.
- •Теоретическое введение
- •Экспериментальная часть
- •Метод определения
- •Порядок выполнения работы
- •Используемая литература
- •Лабораторная работа 1-16 “Определение модуля Юнга методом прогиба”
- •Теоретическое введение
- •Экспериментальная часть
- •Лабораторная установка
- •Методика измерений
- •Контрольные вопросы.
- •Используемая литература
- •Лабораторная работа 1-17 “Изучение упругой деформации растяжения”
- •Теоретическое введение
- •Экспериментальная часть
- •Лабораторная установка
- •Методика измерения
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-18 “Изучение свободных колебаний пружинного маятника”
- •Теоретическое введение
- •Экспериментальная часть
- •Описание установки
- •Контрольные вопросы.
- •Лабораторная работа 1-19 “Изучение колебаний физического маятника”
- •Теоретическое введение
- •По второму закону Ньютона для вращательного движения маятника:
- •Экспериментальная часть
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-20 “Определение коэффициента трения качения методом исследования колебаний наклонного маятника”
- •Теоретическое введение
- •Методика измерения
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-21 “Измерение момента инерции тела методом крутильных колебаний”
- •Теоретическое введение Движение твердого тела с закрепленной осью.
- •Экспериментальная часть
- •Порядок выполнения работы
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-22 “Определение отношения удельных теплоемкостей для воздуха методом адиабатического расширения”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-23 “Определение отношения акустическим методом”
- •Экспериментальная часть
- •Методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-24 “Определение теплоемкости твердых тел”
- •Теоретическое введение
- •Методика измерений
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные задания
- •Используемая литература
- •Лабораторная работа 1-25 “Определение изменения энтропии при нагревании и плавлении олова“
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерения
- •Контрольные вопросы
- •Используемая литература
- •Библиографический список
- •Приложения Справочные материалы
По второму закону Ньютона для вращательного движения маятника:
, (19.7)
где
– момент инерции маятника относительно
оси, проходящей через точку подвеса;
– угловое ускорение маятника, равное
второй производной угла поворота:
.
Из уравнений (19.6) и (19.7) имеем:
,
или
.
(19.8)
При
малых углах
,
и уравнение (19.8) будет иметь вид:
.
(19.9)
Сравнивая (19.9) и (19.5), устанавливаем, что изменяется по гармоническому закону с круговой частотой ω, причем
,
(19.10)
а период колебаний маятника
.
(19.11)
Если вся масса маятника сосредоточена в одной точке (например, шарик, подвешенный на невесомой нерастяжимой нити), то такой маятник называют математическим (рис.19.3). В других случаях маятник называют физическим.
П
Рис.19.3
.
(19.12)
Для
математического маятника момент инерции
рассчитывается как для материальной
точки:
,
поэтому период его колебаний равен:
.
(19.13)
В
лабораторной работе используется
физический маятник
в виде кольца (рис.19.4) или в виде однородного
тонкого стержня (рис.19.5). Момент инерции
маятника относительно точки подвеса О
можно найти по теореме Штейнера: момент
инерции тела относительно произвольной
оси равен сумме момента инерции тела
относительно оси, проходящей через
центр масс параллельно данной оси, и
произведения массы тела на квадрат
расстояния между осями.
Для кольца
получим:
.
(19.14)
З
Рис.19.4
– момент инерции маятника относительно
оси, проходящей через точку подвеса O,
IC
– момент инерции
относительно оси, проходящей через
центр масс – точку C,
r
– расстояние между осями.
Момент инерции полого (толстостенного)
цилиндра или кольца массой m
с внутренним радиусом r
и наружным R
относительно оси, проходящей через
центр масс, равен:
IC=
m(R2+r2),
(19.15)
Тогда из (19.14) и (19.15) получаем:
IO=
m(R2+r2)+mr2=
m(R2+3r2)
=
m(D2+3d2),
(19.16)
где
и
– внешний и
внутренний диаметры диска соответственно.
Из формулы (19.11) выразим ускорение
свободного падения с учетом, что l=r=d/2,
и из (19.16) подставим момент инерции:
,
и окончательно:
.
(19.17)
Для стержня по теореме Штейнера получим:
,
(19.18)
г
L
O
C
O1
lпр.
l
,
(19.19)
где L – длина стержня, m – его масса.
М
Рис.19.5
.
Точка О1, лежащая на прямой ОС на расстоянии lпр.от точки подвеса маятника (рис.19.5), называется центром качания маятника. Центр качания О1 и точка подвеса О обладают свойством взаимности: если маятник подвесить так, чтобы его ось качания проходила через точку О1, то точка О будет совпадать с новым положением центра качания маятника, то есть приведенная длина и период колебаний маятника останутся прежними. Покажем это. По теореме Штейнера момент инерции I1 маятника относительно оси, проходящей через точку О1, равен:
.
(19.20)
Из (19.18) и (19.20) вычислим IC:
IC= I1 – ml12=I – ml2. (19.21)
Из
(19.12) выразим момент инерции маятника
и запишем аналогичную формулу для I1:
.
Здесь использовано условие, что частота
колебаний маятника относительно оси,
проходящей через точку О1,
должна быть той же самой, что и для оси,
проходящей через точку О. Подставив оба
момента инерции в (19.21) получим уравнение:
.
Далее после преобразований:
,
и после сокращения на (l1–l):
.
Но по определению приведенной длины физического маятника (19.12):
,
то есть
lпр. =l1+l,
что и требовалось показать.
Для физического маятника – стержня из (19.12), (19.18) и (19.19) получим:
,
или:
.
(19.22)