- •Електричний заряд. Електричне поле. Закон Кулона. Напруженість та індукція електричного поля.
- •Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
- •А) Електричне поле всередині рівномірно зарядженої кулі.
- •Електричне поле ззовні рівномірно зарядженої кулі.
- •Б) Електричне поле нескінченої рівномірно зарядженої прямої.
- •В) Електричне поле нескінченної рівномірно зарядженої площини.
- •Робота сил електричного поля. Теорема про циркуляцію вектора напруженості електричного поля. Потенціал. Зв'язок між напруженістю і потенціалом
- •А) Потенціал поля рівномірно зарядженої кулі
- •Б) Потенціал поля нескінченної рівномірно зарядженої прямої
- •В) Потенціал поля нескінченої рівномірно зарядженої площини
- •Провідники в електричному полі. Електроємність відокремленого провідника
- •§ 3.7. Конденсатори. Електроємність конденсатора. З’єднання конденсаторів
- •§ 3.9. Діелектрики в електричному полі. Поляризація діелектриків
- •§ 3.10. Електричний струм. Закон Ома для ділянки кола. Закон Ома в диференціальній формі
- •§ 3.13. Робота і потужність струму. Закон Джоуля-Ленца
- •§4.1. Магнітне поле і його характеристики. Дія магнітного поля на контур зі струмом. Принцип суперпозиції. Класифікація магнетиків
- •§4.2. Закон Біо-Савара-Лапласа. Магнітне поле прямолінійного та колового струмів
- •§4.3. Циркуляція вектора напруженості магнітного поля. Вихровий характер магнітного поля. Поле довгого соленоїда
- •§4.4. Дія магнітного поля на струм; сила Ампера. Магнітна взаємодія струмів
- •§4.5. Сила Лоренца. Рух електричних зарядів у магнітному полі
- •§4.6. Магнітний потік. Теорема Гауса для магнітного поля
- •§4.8. Явище електромагнітної індукції. Закон Фарадея. Правило Ленца
- •§4.10. Магнітне поле в речовині
- •1.2. Фізичні основи принципу запису на магнітний носій та читання з нього
- •1.3.1.Пам’ять на магнітній дротині
- •1.3.2. Пам’ять на магнітній стрічці
- •1.3.3. Пам’ять на магнітних осердях
- •1.3.4 Пам’ять на магнітних дисках
- •1.3.5 Підвищення щільності запису магнітних дисків за допомогою технології afc
- •31. Накопичувач на гнучких магнітних дисках
- •32. Пам’ять на циліндричних магнітних доменах (цмд)
- •33. Види головок запису/читання
- •34. Головки mig (головки з металом в зазорі)
- •35. Магніторезистивні (мr) головки
- •37. Явище зміни магнітоопору
- •36. Гігантські магніторезистивні головки
- •38. Система паралельного (горизонтального) зберігання даних
Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
Нехай
в просторі існує електричне поле,
створене деякими електричними зарядами.
Розглянемо деяку поверхню з нескінченно
малою площею dS
(елементарну поверхню) з одиничним
вектором нормалі до поверхні
,
як зображено на рис.3.3. Нехай в центрі
елементарної поверхні напруженість
електричного поля рівна
.
Е
Рис.3.3
лементарним потоком вектора напруженості електричного поля називається скалярна величина, рівна скалярному добуткові вектора напруженості електричного поля і одиничного вектора нормалі на площу елементарної поверхні:
,
(3.10)
де
– кут між векторами
і
.
Подібним чином можна дати визначення елементарного потоку вектора індукції електричного поля, який рівний:
.
(3.11)
Потік вектора напруженості електричного поля через деяку поверхню S визначається за формулою:
.
(3.12)
Він пропорційний числу силових ліній, які пронизують цю поверхню.
Потік вектора індукції електричного поля через деяку поверхню S рівний:
. (3.13)
Р
Рис.3.4
озглянемо деякий точковий позитивний заряд , який помістимо в центрі сферичної поверхні S радіусом R (рис. 3.4). Обчислимо потік вектора напруженості електричного поля через цю замкнену поверхню
.
(3.14)
Напруженість електричного поля точкового заряду в будь якій точці сферичної поверхні рівна
.
(3.15)
Підставимо
(3.15) в (3.14), врахуємо, що кут між векторами
і
в даному випадку
.
.
Оскільки для всіх точок сферичної поверхні величина R є постійною то, винісши постійні множники за знак інтегралу, отримаємо:
.
(3.16)
Але інтеграл по замкнутій поверхні S - це площа сферичної поверхні, яка рівна:
.
(3.17)
Підставимо вираз (3.17) в (3.16):
. (3.18)
Український вчений М.В.Остроградський і німецький вчений К.Гаус довели, що формула (3.18) справедлива для замкненої поверхні довільної форми і довільної кількості електричних зарядів, які знаходяться всередині цієї поверхні. Тому в загальному випадку формулу (3.18) можна представити у вигляді:
.
(3.19)
Формула (3.19) – це теорема Остроградського-Гауса для напруженості електричного поля: потік вектора напруженості електричного поля через довільну замкнену поверхню рівний алгебраїчній сумі електричних зарядів, охоплених цією поверхнею, поділеній на діелектричну проникність середовища та на електричну сталу.
Помножимо
рівняння (3.19) на
.
Враховуючи, що цей множник постійний,
внесемо його під знак інтегралу:
.
(3.20)
Враховуючи (3.7), отримаємо
.
(3.21)
Формула (3.21) це теорема Остроградського-Гауса для індукції електричного поля: потік вектора індукції електричного поля через довільну замкнену поверхню рівний алгебраїчній сумі електричних зарядів, охоплених цією поверхнею.
Розглянемо
випадок коли електричні заряди розподілені
в просторі неперервно з деякою об’ємною
густиною
.
Об’ємною
густиною електричного заряду
називається
фізична величина, рівна електричному
зарядові в одиниці об’єму простору:
.
(3.22)
Визначимо з цієї формули dq:
.
(3.23)
Проінтегрувавши вираз (3.23) по деякому об’єму V визначимо сумарний електричний заряд який міститься в цьому об’ємі:
. (3.24)
З врахуванням формули (3.24) теорему Остроградського-Гауса (3.19) і (3.21) у випадку неперервного просторового розподілу зарядів можна представити у вигляді:
. (3.25)
. (3.26)
У формулах (3.25) і (3.26) інтегрування здійснюється по всьому об’єму V який обмежений замкненою поверхнею S.
Розрахунок електричних полів за допомогою теореми Остроградського-Гауса
Для розрахунку електричного поля створеного зарядженим тілом необхідно розбити це тіло на точкові заряди і визначити напруженість електричного поля в деякій точці простору за принципом суперпозиції. Для багатьох тіл такі розрахунки математично досить складні. Для деяких симетричних тіл розрахунок електричного поля значно спрощується при використанні теореми Остроградського-Гауса. Розглянемо деякі приклади таких розрахунків.
