
- •Передмова
- •1.1.2. Означення статики
- •1.1.3. Механічні в’язі та їхні реакції
- •В’язь – гладенька поверхня
- •Гостре вістря або ребро
- •В’язь – шорстка поверхня
- •В’язь – невагома, нерозтяжна ідеальна нитка
- •В’язь – стержень
- •В’язь – нерухома шарнірна опора
- •В’язь – жорстке защемлення (заробка)
- •1.1.4. Аксіоми про в’язі та їхні реакції
- •1.1.5. Класифікація сил. Метод перерізів
- •1.1.6. Теорема про рівновагу трьох непаралельних сил, прикладених до твердого тіла
- •1.1.7. Сили тертя ковзання і їхні властивості
- •Запитання для самоконтролю
- •1.2. Основні властивості систем сил, прикладених до абсолютно твердого тіла
- •1.2.1. Аналітичне визначення ковзного вектора.
- •1.2.2. Система збіжних сил. Умови рівноваги
- •Задачі для самостійного розв’язування
- •1.2.3. Аналітичне визначення ковзного вектора рівнодійної системи двох паралельних сил. Центр паралельних сил
- •1.2.4. Пара сил. Момент пари сил. Властивості пар сил
- •Запитання для самоконтролю
- •1.3. Перетворення систем сил. Умови рівноваги
- •1.3.1. Аналітичне визначення головного вектора і головного моменту системи сил
- •1.3.2. Умови рівноваги вільного твердого тіла
- •Задачі для самостійного розв’язування
- •1.3.3. Зведення систем сил до найпростішого вигляду. Інваріанти системи сил відносно центра зведення
- •2. Якщо ; , то система сил зводиться до пари сил.
- •3. Якщо і – система зрівноважується.
- •1.3.4. Центр паралельних сил і центр ваги
- •1.4. Розрахунково-графічна робота із застосуванням комп’ютера
- •Завдання на розрахунково-графічнУ роботУ
- •Ферма з позначеними силовими зонами
- •Діаграма Максвелла-Кремони
- •На діаграмі зображено:
- •2.1.2. Способи визначення руху точки
- •2.1.3. Годограф векторної функції
- •2.1.4. Швидкість руху точки
- •2.1.5. Прискорення руху точки
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •2.2. Кінематика абсолютно твердого тіла
- •2.2.1. Основні положення
- •2.2.2. Поступальний рух твердого тіла
- •2.2.3. Обертальний рух твердого тіла навколо нерухомої осі
- •Координати точки м і орт не залежать від часу; орти , є функціями часу. Отже,
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •2.2.6. Плоскопаралельний рух твердого тіла. Рівняння руху
- •2.2.7. Розподіл швидкостей точок тіла при плоскопаралельному русі
- •2.2.8. План швидкостей
- •2.2.10. Миттєвий центр прискорень
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •2.2.11. Додавання обертальних рухів тіла навколо осей, що перетинаються
- •Аксоїди. Теорема Пуансо
- •2.2.13. Теорема Ейлера. Кути Ейлера. Рівняння руху твердого тіла з нерухомою точкою
- •2.2.14. Розподіл швидкостей і прискорень точок тіла з нерухомою точкою
- •Задачі для самостійного розв’язування
- •2.3. Складний рух матеріальної точки
- •2.3.1. Основні положення
- •2.3.2. Теорема про додавання швидкостей точки
- •2.3.3. Теорема про додавання прискорень точки
- •2.4. Складний рух твердого тіла
- •2.4.1. Додавання поступальних рухів тіла
- •2.4.2. Пара обертань
- •2.4.3. Додавання обертань тіла навколо паралельних осей
- •2.4.4. Додавання поступального і обертального рухів тіла
- •2.4.5. Метод “зупинки” (метод Вілліса)
- •Задачі для самостійного розв’язування
- •2.5. Розрахунково-графічна робота із застосуванням комп’ютера
- •Завдання на розрахунково-графічнУ роботУ
- •1. Спроектувати за допомогою комп’ютера механізм, при цьому зобразити ланки, які здійснюють:
- •2. Роздрукувати механізм для заданого положення кута та для трьох положень кута 60, 120, 240.
- •3. Зобразити кутові швидкості всіх ланок та вектори швидкостей усіх точок механізму, вказавши положення миттєвих центрів швидкостей (рис. 2.76 – 2.78)
- •4. Побудувати план швидкостей (рис. 2.76 - 2.78)
- •5. Зобразити кутові прискорення всіх ланок та вектори прискорень усіх точок механізму за допомогою плану прискорень (рис. 2.79–2.81)
- •2.6 Знайти положення миттєвих центрів прискорень
- •Розділ 3 динаміка
- •3.1. Динаміка матеріальної точки
- •3.1.1. Диференціальні рівняння руху вільної матеріальної точки. Основні задачі динаміки точки
- •3.1.2. Прямолінійні коливання точки
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •3.2. Динаміка системи матеріальних точок
- •3.2.1. Основні поняття
- •3.2.2. Диференціальні рівняння руху невільної системи
- •3.2.3. Принцип Даламбера
- •3.2.4. Динаміка відносного руху точки
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •3.3. Основні теореми динаміки
- •3.3.1. Теорема про зміну кінетичної енергії точки
- •Приклади
- •3.3.2. Елементи теорії потенціального силового поля. Закон збереження повної механічної енергії
- •3.3.3. Теорема про зміну кінетичної енергії матеріальної системи
- •3.3.4. Обчислення моментів інерції
- •3.3.5. Теорема про рух центра мас системи
- •3.3.6. Теореми про зміну кількості руху системи і зміну кінетичного моменту
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •3.4. Елементи теорії удару
- •Співудар двох куль
- •Теорема Остроградського-Карно (про зміну кінетичної енергії при ударі)
- •Фізичний маятник під дією удару
- •Приклади
- •3.5. Розрахунково-графічна робота із застосуванням комп’ютера
- •Завдання на розрахунково-графічнУ роботУ
- •Завдання
- •1. Визначимо значення сили , за яких кочення відбувається без ковзання, а також її граничні значення, коли зчеплення котка з дорогою знаходиться на межі зриву
- •Сила f зчеплення з площиною у ньютонах
- •2. Знайдемо межі зміни прискорення центра мас котка, за умови його кочення без ковзання
- •Прискорення центра мас в м/с2
- •3. Для граничних значень сили р знайдемо рівняння руху котка, якщо у початковий момент він перебував у стані спокою
- •4. Змоделюємо рух котка для обох граничних випадків за отриманими законами руху
- •4.1.2. Принцип можливих переміщень. Загальне рівняння статики
- •4.1.3. Принцип Даламбера-Лагранжа. Загальне рівняння динаміки
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •4.2.2. Загальне рівняння статики в узагальнених координатах. Узагальнені рівняння рівноваги
- •4.2.3. Рівняння Лагранжа другого роду
- •4.2.4. Методика застосування рівнянь Лагранжа другого роду
- •1. Диференціальне рівняння обертального руху твердого тіла навколо нерухомої осі
- •2 Диференціальні рівняння плоскопаралельного руху твердого тіла
- •4.2.5 Рух системи в консервативному полі. Кінетичний потенціал
- •4.2.6. Рівняння Лагранжа другого роду для дисипативних систем. Функція Релея
- •4.2.7. Кінетична енергія і функція Релея в узагальнених координатах
- •4.2.8. Узагальнене рівняння енергії. Фізичний зміст функції Релея
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •4.3. Малі коливання матеріальної системи
- •4.3.1. Положення стійкої рівноваги. Теорема Лагранжа-Діріхле і теореми Ляпунова
- •4.3.2. Диференціальні рівняння малих коливань системи в околі положення стійкої рівноваги
- •4.3.3. Вільні коливання системи з степенями вільності
- •4.3.4. Вільні коливання системи з одним степенем вільності. Інтерпретація руху на фазовій площині
- •4.3.5. Вплив сил опору на вільні коливання системи. Згасаючі коливання
- •4.3.6. Вимушені коливання системи. Вплив сил опору на вимушені коливання
- •4.3.7. Дослідження амплітудно-частотних характеристик системи
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •1. Складемо рівняння Лагранжа іі роду
- •3. Визначимо натяги у нитках, до яких прикріплені вантажі 1 і 4;
- •4. Змоделюємо рух механічної системи з отриманими законами руху.
- •Завдання на розрахунково-графічнУ роботУ
- •Завдання
- •1. Складемо рівняння Лагранжа іі роду
- •Знайдемо власні частоти коливань.
- •3. Визначимо закони руху еліптичного маятника.
- •4. Змоделювати рух еліптичного маятника за отриманими законами руху.
- •Список літератури
- •А українсько-російський словник
- •Предметний покажчик
4.2.8. Узагальнене рівняння енергії. Фізичний зміст функції Релея
Розглянемо рівняння Лагранжа другого роду для дисипативних систем (4.72):
.
(4.80)
Помножимо кожне з рівнянь (4.80) на відповідну узагальнену швидкість і почленно додамо всі рівняння:
.
(4.81)
Права частина (4.81) – узагальнена потужність збурювальних сил. Функції і – квадратичні форми узагальнених швидкостей (розглядаємо випадок, коли на систему накладені лише стаціонарні в’язі), тому за теоремою Ейлера про однорідні функції
.
(4.82)
Потенціальна енергія явно залежить лише від узагальнених координат, тому
.
(4.83)
Щоб розглянути перший доданок виразу (4.81), спочатку знайдемо
.
Тоді
.
(4.84)
Отже, остаточно матимемо
,
(4.85)
де
– узагальнена потужність збурювальних
сил.
Рівність (4.85) називають узагальненим рівнянням енергії.
При
відсутності зовнішнього збурення (
)
з урахуванням
,
(4.86)
тобто подвоєна функція Релея визначає зменшення повної механічної енергії системи з часом. Інакше кажучи, функція Релея характеризує бистроту розсіювання повної механічної енергії системи.
Нарешті, для консервативної системи (Ф = 0) із(4.85) дістанемо добре відоме співвідношення
.
Приклад 4.1. Повзун масою ковзає без тертя по горизонтальній площині (рис. 4.14). Стержень АВ довжиною із кулькою маси на кінці може обертатися навколо осі, з’єднаної з повзуном А і перпендикулярної до площини рисунка. Нехтуючи масою стержня, скласти рівняння руху еліптичного маятника.
Рисунок 4.14
Розв’язання. Визначимо кількість степенів вільності системи. Вона дорівнює найменшій кількості додаткових в’я-зей, що перетворюють систему в нерухому ( =0). Отже, у даному випадку =2. Узагальнені координати – параметри і .
Загальний вигляд рівнянь руху такий:
.
(4.87)
Для
обчислення узагальнених сил зафіксуємо
одну координату і надамо приріст іншій.
Обчислимо роботу сил. Нехай спочатку
.
Роботу мають виконувати тільки сили
ваги
і
,
але їх напрям перпендикулярний до
напряму переміщення
.
Тому
і узагальнена сила
.
(4.88)
Нехай
а
.
Тоді
,
звідки
.
(4.89)
Кінетична енергія системи
,
(4.90)
Швидкість
повзуна
,
а швидкість кульки
знайдемо за координатним способом
;
(4.91)
.
(4.92)
Диференціюємо (4.92) за часом
.
(4.93)
На підставі (4.91) і (4.93) дістанемо
.
(4.94)
Підставимо
і
до (4.90)
.
(4.95)
Знайдемо
похідні від кінетичної енергії за
:
Здобуті вирази, а також (4.88) і (4.89) підставимо до рівнянь (4.87), дістанемо шукані рівняння руху еліптичного маятника:
Рекомендуємо читачам самостійно дослідити отриману систему диференціальних рівнянь.
Задачі для самостійного розв’язування
Рисунок 4.15
Задача 4.5. Механізм складається з вертикальної осі 1, горизонтального стержня 2 і колеса 3 (рис. 4.15). Визначити кількість степенів вільності колеса 3.
Відповідь: 4.
Задача
4.6.
Фрикційна передача складається з коліс
1, 2, 3 (рис. 4.16). До коліс 1 і 3 прикладені
пари сил з моментами
= 15 Нм
і
= 5 Нм
. Взявши за узагальнену координату кут
,
визначити відповідну узагальнену силу,
якщо
= 0,3 м,
=
0,5 м.
Відповідь: 12 Нм.
Рисунок 4.16
|
Задача
4.7.
Пара сил зі сталим моментом М
= 1 Нм
обертає трикутну пластину OBD
з кутом
Відповідь: 0,85 Н. |
Рисунок 4.17 |