
- •Передмова
- •1.1.2. Означення статики
- •1.1.3. Механічні в’язі та їхні реакції
- •В’язь – гладенька поверхня
- •Гостре вістря або ребро
- •В’язь – шорстка поверхня
- •В’язь – невагома, нерозтяжна ідеальна нитка
- •В’язь – стержень
- •В’язь – нерухома шарнірна опора
- •В’язь – жорстке защемлення (заробка)
- •1.1.4. Аксіоми про в’язі та їхні реакції
- •1.1.5. Класифікація сил. Метод перерізів
- •1.1.6. Теорема про рівновагу трьох непаралельних сил, прикладених до твердого тіла
- •1.1.7. Сили тертя ковзання і їхні властивості
- •Запитання для самоконтролю
- •1.2. Основні властивості систем сил, прикладених до абсолютно твердого тіла
- •1.2.1. Аналітичне визначення ковзного вектора.
- •1.2.2. Система збіжних сил. Умови рівноваги
- •Задачі для самостійного розв’язування
- •1.2.3. Аналітичне визначення ковзного вектора рівнодійної системи двох паралельних сил. Центр паралельних сил
- •1.2.4. Пара сил. Момент пари сил. Властивості пар сил
- •Запитання для самоконтролю
- •1.3. Перетворення систем сил. Умови рівноваги
- •1.3.1. Аналітичне визначення головного вектора і головного моменту системи сил
- •1.3.2. Умови рівноваги вільного твердого тіла
- •Задачі для самостійного розв’язування
- •1.3.3. Зведення систем сил до найпростішого вигляду. Інваріанти системи сил відносно центра зведення
- •2. Якщо ; , то система сил зводиться до пари сил.
- •3. Якщо і – система зрівноважується.
- •1.3.4. Центр паралельних сил і центр ваги
- •1.4. Розрахунково-графічна робота із застосуванням комп’ютера
- •Завдання на розрахунково-графічнУ роботУ
- •Ферма з позначеними силовими зонами
- •Діаграма Максвелла-Кремони
- •На діаграмі зображено:
- •2.1.2. Способи визначення руху точки
- •2.1.3. Годограф векторної функції
- •2.1.4. Швидкість руху точки
- •2.1.5. Прискорення руху точки
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •2.2. Кінематика абсолютно твердого тіла
- •2.2.1. Основні положення
- •2.2.2. Поступальний рух твердого тіла
- •2.2.3. Обертальний рух твердого тіла навколо нерухомої осі
- •Координати точки м і орт не залежать від часу; орти , є функціями часу. Отже,
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •2.2.6. Плоскопаралельний рух твердого тіла. Рівняння руху
- •2.2.7. Розподіл швидкостей точок тіла при плоскопаралельному русі
- •2.2.8. План швидкостей
- •2.2.10. Миттєвий центр прискорень
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •2.2.11. Додавання обертальних рухів тіла навколо осей, що перетинаються
- •Аксоїди. Теорема Пуансо
- •2.2.13. Теорема Ейлера. Кути Ейлера. Рівняння руху твердого тіла з нерухомою точкою
- •2.2.14. Розподіл швидкостей і прискорень точок тіла з нерухомою точкою
- •Задачі для самостійного розв’язування
- •2.3. Складний рух матеріальної точки
- •2.3.1. Основні положення
- •2.3.2. Теорема про додавання швидкостей точки
- •2.3.3. Теорема про додавання прискорень точки
- •2.4. Складний рух твердого тіла
- •2.4.1. Додавання поступальних рухів тіла
- •2.4.2. Пара обертань
- •2.4.3. Додавання обертань тіла навколо паралельних осей
- •2.4.4. Додавання поступального і обертального рухів тіла
- •2.4.5. Метод “зупинки” (метод Вілліса)
- •Задачі для самостійного розв’язування
- •2.5. Розрахунково-графічна робота із застосуванням комп’ютера
- •Завдання на розрахунково-графічнУ роботУ
- •1. Спроектувати за допомогою комп’ютера механізм, при цьому зобразити ланки, які здійснюють:
- •2. Роздрукувати механізм для заданого положення кута та для трьох положень кута 60, 120, 240.
- •3. Зобразити кутові швидкості всіх ланок та вектори швидкостей усіх точок механізму, вказавши положення миттєвих центрів швидкостей (рис. 2.76 – 2.78)
- •4. Побудувати план швидкостей (рис. 2.76 - 2.78)
- •5. Зобразити кутові прискорення всіх ланок та вектори прискорень усіх точок механізму за допомогою плану прискорень (рис. 2.79–2.81)
- •2.6 Знайти положення миттєвих центрів прискорень
- •Розділ 3 динаміка
- •3.1. Динаміка матеріальної точки
- •3.1.1. Диференціальні рівняння руху вільної матеріальної точки. Основні задачі динаміки точки
- •3.1.2. Прямолінійні коливання точки
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •3.2. Динаміка системи матеріальних точок
- •3.2.1. Основні поняття
- •3.2.2. Диференціальні рівняння руху невільної системи
- •3.2.3. Принцип Даламбера
- •3.2.4. Динаміка відносного руху точки
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •3.3. Основні теореми динаміки
- •3.3.1. Теорема про зміну кінетичної енергії точки
- •Приклади
- •3.3.2. Елементи теорії потенціального силового поля. Закон збереження повної механічної енергії
- •3.3.3. Теорема про зміну кінетичної енергії матеріальної системи
- •3.3.4. Обчислення моментів інерції
- •3.3.5. Теорема про рух центра мас системи
- •3.3.6. Теореми про зміну кількості руху системи і зміну кінетичного моменту
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •3.4. Елементи теорії удару
- •Співудар двох куль
- •Теорема Остроградського-Карно (про зміну кінетичної енергії при ударі)
- •Фізичний маятник під дією удару
- •Приклади
- •3.5. Розрахунково-графічна робота із застосуванням комп’ютера
- •Завдання на розрахунково-графічнУ роботУ
- •Завдання
- •1. Визначимо значення сили , за яких кочення відбувається без ковзання, а також її граничні значення, коли зчеплення котка з дорогою знаходиться на межі зриву
- •Сила f зчеплення з площиною у ньютонах
- •2. Знайдемо межі зміни прискорення центра мас котка, за умови його кочення без ковзання
- •Прискорення центра мас в м/с2
- •3. Для граничних значень сили р знайдемо рівняння руху котка, якщо у початковий момент він перебував у стані спокою
- •4. Змоделюємо рух котка для обох граничних випадків за отриманими законами руху
- •4.1.2. Принцип можливих переміщень. Загальне рівняння статики
- •4.1.3. Принцип Даламбера-Лагранжа. Загальне рівняння динаміки
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •4.2.2. Загальне рівняння статики в узагальнених координатах. Узагальнені рівняння рівноваги
- •4.2.3. Рівняння Лагранжа другого роду
- •4.2.4. Методика застосування рівнянь Лагранжа другого роду
- •1. Диференціальне рівняння обертального руху твердого тіла навколо нерухомої осі
- •2 Диференціальні рівняння плоскопаралельного руху твердого тіла
- •4.2.5 Рух системи в консервативному полі. Кінетичний потенціал
- •4.2.6. Рівняння Лагранжа другого роду для дисипативних систем. Функція Релея
- •4.2.7. Кінетична енергія і функція Релея в узагальнених координатах
- •4.2.8. Узагальнене рівняння енергії. Фізичний зміст функції Релея
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •4.3. Малі коливання матеріальної системи
- •4.3.1. Положення стійкої рівноваги. Теорема Лагранжа-Діріхле і теореми Ляпунова
- •4.3.2. Диференціальні рівняння малих коливань системи в околі положення стійкої рівноваги
- •4.3.3. Вільні коливання системи з степенями вільності
- •4.3.4. Вільні коливання системи з одним степенем вільності. Інтерпретація руху на фазовій площині
- •4.3.5. Вплив сил опору на вільні коливання системи. Згасаючі коливання
- •4.3.6. Вимушені коливання системи. Вплив сил опору на вимушені коливання
- •4.3.7. Дослідження амплітудно-частотних характеристик системи
- •Приклади
- •Задачі для самостійного розв’язування
- •Запитання для самоконтролю
- •1. Складемо рівняння Лагранжа іі роду
- •3. Визначимо натяги у нитках, до яких прикріплені вантажі 1 і 4;
- •4. Змоделюємо рух механічної системи з отриманими законами руху.
- •Завдання на розрахунково-графічнУ роботУ
- •Завдання
- •1. Складемо рівняння Лагранжа іі роду
- •Знайдемо власні частоти коливань.
- •3. Визначимо закони руху еліптичного маятника.
- •4. Змоделювати рух еліптичного маятника за отриманими законами руху.
- •Список літератури
- •А українсько-російський словник
- •Предметний покажчик
Приклади
Приклад 3.13. Дві однакових пружних кулі А і В рухаються назустріч одна одній. При якому співвідношенні між швидкостями до удару куля А після удару зупиниться. Коефіцієнт поновлення при ударі дорівнює .
Розв’язання.
Розглянемо
рух матеріальної системи, що складається
з двох однакових куль, тобто
.
При прямому центральному ударі двох
куль застосовують закон збереження
кількості руху за час удару. Приймаючи
до уваги напрями
векторів
і
– швидкостей до удару, дістанемо (рис.
3.53)
(3.224)
Друге рівняння знайдемо з (3.202), яке для даного випадку має вигляд:
Рисунок 3.53
.
(3.225)
Оскільки
,
то з (3.225) знаходимо
.
Підставляючи це значення в (3.224), дістанемо
і далі
,
звідки
.
Приклад 3.14. Балістичний маятник, який застосовують для визначення швидкості снаряда, складається з циліндра АВ (рис. 3.54), підвішеного на горизонтальній осі . Циліндр відкритий з кінця А і наповнений піском; снаряд, влітаючи в циліндр, спричиняє обертання маятника навколо осі О на певний кут .
Рисунок 3.54
Дано:
– маса маятника;
– відстань його центра ваги С
від осі О;
– радіус інерції маятника відносно осі
О;
– маса снаряда;
– відстань від лінії дії ударного
імпульсу до осі.
Визначити
швидкість
снаряда, припускаючи, що вісь маятника
О
не зазнає удару, тобто
(формула 3.223).
Розв’язання.
Припустимо, що перший етап удару починається з моменту дотику снаряда, що рухався з швидкістю , і нерухомого маятника. Другий етап удару закінчується тоді, коли маятник разом зі снарядом, що знаходиться в точці , дістане певну кутову швидкість .
Коефіцієнт поновлення в цьому випадку дорівнює нулеві, тому що швидкість снаряда відносно маятника після удару дорівнює нулеві.
Оскільки
маятник здійснює обертальний рух, то
застосуємо замість закону збереження
за час удару кількості руху системи
закон збереження кінетичного моменту.
Система складається з точки М
(снаряда) і маятника. Її кінетичний
момент
(відносно осі
перпендикулярної до рисунка) дорівнює
сумі
,
де перший доданок визначає кінетичний
момент маятника, а другий – снаряда.
На
першому етапі удару
,
тобто
.
На
другому етапі
,
де
– момент інерції системи відносно осі
,
а
– кутова швидкість, отримана за час
удару. На підставі закону збереження
маємо
.
(3.226)
Для визначення розглянемо обертальний рух маятника разом зі снарядом навколо осі до моменту, коли він повернувся на кут і зупинився. Застосуємо теорему про зміну кінетичної енергії системи:
. (3.227)
Тут
,
оскільки повернувшись на кут
,
маятник зупиниться
.
Робота
сил, прикладених до цієї системи,
складається з роботи сил ваги маятника
і снаряда і роботи
реакції
шарніра О;
(
дорівнює нулеві, оскільки сила
прикладена в нерухомій точці О).
Визначимо роботу сили ваги маятника:
,
де
.
Тут
– центр ваги маятника в положенні
стійкої рівноваги, а С
– у відхиленому положенні (рис. 3.55)
– (3.228)
робота від’ємна, оскільки точка С піднімається.
Аналогічно
обчислимо роботу сили ваги снаряда,
прикладеної спочатку в точці
:
.
(3.229)
Тоді з (3.228) і (3.229)
.
Підставляємо цей вираз в (3.227)
Рисунок 3.55
і знаходимо :
.
Після підстановки в (3.226) дістанемо
;
оскільки
,
то
і, перетво-
ривши
,
отримаємо остаточно
.