
- •Фогель ф., Мотульски а. Генетика человека: в 3-х т. Т. 2: Пер. С англ. – м.: Мир, 1990. – 378 с.
- •Ф. Фогель, а.Мотульски генетика человека
- •4. Действие генов
- •4.1. Развитие менделевской парадигмы
- •4.2. Гены и ферменты
- •4.2.1. Гипотеза «один ген – один фермент»
- •Модель Бидла и Татума. Статья этих исследователей начиналась так:
- •4.2.2. Гены и ферменты у человека: современный уровень знаний
- •4.2.2.1. Обнаружение и анализ ферментативных нарушений
- •4.2.2.2. Типичные нарушения функций ферментов: ферменты эритроцитов
- •4.2.2.3 Мукополисахаридозы
- •4.2.2.5. Влияние кофакторов на активность ферментов [182]
- •4.2.2.6. Сцепленная с х-хромосомой недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы (30800) [7055]
- •4.2.2.7. Фенилкетонурия: пример успешного лечения метаболического заболевания [182; 203]
- •4.2.2.8. Выявление гетерозигот
- •4.2.2.9. Лечение наследственных метаболических заболеваний [1289; 1057; 1058]
- •4.2.2.10. Необнаруженные дефекты ферментов
- •4.3. Гемоглобин человека [119; 31; 97а]
- •4.3.1. История изучения гемоглобина
- •4.3.2. Генетика гемоглобина
- •4.3.4. Талассемии [31; 972; 138; 1253; 222; 97а]
- •4.3.5. Популяциоииая генетика генов гемоглобина (см. [972], разд. 6.1.2.3)
- •4.3.6. Пренатальная диагностика гемоглобинопатии [966; 2269; 2322; 2361]
- •4.4. Генетика антител и системы антиген/рецептор
- •4.5. Фармакогенетика и экогенетика 4.5.1. Фармакогенетика
- •4.5.2. Экогенетика [143; 969; 1228; 1250]
- •4.6. Механизм аутосомной доминантности
- •4.6.1. Аномальная агрегация субъединиц
- •4.6.2. Аномальные субъединицы нарушают функции мультимерных белков
- •4.6.3. Аномальное ингибирование ферментов по типу обратной связи и структурно аномальные ферменты
- •4.6.4. Мутации рецепторов
- •4.6.5. Наследственные дефекты клеточных мембран
- •4.6.6. Накопление аномальных фибриллярных белков: наследственные амилоидозы (10480 10525) [1102]
- •4.6.7. Доминантно наследуемые опухолевые заболевания
- •4.7. Генетика эмбрионального развития
- •4.7.1. Активность генов в раннем развитии
- •4.7.2. Поздние стадии эмбрионального развития; фенокопии
- •4.7.3. Регуляция активности генов у бактерий и эукариот
- •4.7.4. Соотношения генотипа и фенотипа при хромосомных аберрациях у человека [1176]
- •4.7.4.1. Эффект дозы генов при трисомиях и картирование генов
- •4.7.4.2. Другие биохимические аномалии при хромосомных аберрациях
- •4.7.4.3. Изучение хромосомных аберраций на уровне клеток
- •4.7.5. Определение поля
- •5. Мутации
- •5.1. Спонтанные мутации
- •5.1.1. Генетические изменения, обусловленные мутациями de novo
- •5.1.2. Геномные и хромосомные мутации у человека
- •5.1.2.1. Частота возникновения мутаций (скорость мутирования)
- •5.1.2.2. Нерасхождение хромосом и возраст матери
- •5.1.2.3. У какого пола и в каком из мейотических делений происходит нерасхождение хромосом?
- •5.1.2.4. Нерасхождение, хромосомные варианты и сателлитные ассоциации
- •5.1.3. Генные мутации: анализ на фенотипическом уровне
- •5.1.3.1. Методы оценки частот мутаций
- •5.1.3.2. Результаты оценки частот мутаций
- •5.1.3.3. Частота мутаций и возраст отца
- •5.1.3.4. Возможные различия частот возникновения мутаций у индивидов разного пола
- •182 5. Мутации
- •5.1.3.5. Герминативноклеточные и соматоклеточные мозаики по доминантным и х-сцепленным мутациям
- •5.1.4. Генные мутации: анализ на молекулярном уровне
- •5.1.4.1. Частоты кодонных мутаций
- •5.1.4.2. Проблема оценки общей частоты мутаций на геном и на поколение
- •5.1.4.3. Мутации в гемоглобиновых генах и генетический код
- •5.1.4.4. Мутации у микроорганизмов: их вклад в понимание механизма мутаций у человека
- •5.1.5. Изучение генных мутаций в отдельных клетках
- •5.1.6. Соматические мутации
- •5.1.6.1. Образование мозаиков по геномным мутациям
- •5.1.6.2. Наследственные синдромы с повышенной нестабильностью хромосом [1465; 1464; 1634]
- •5.1.6.3. Молекулярные механизмы хромосомной нестабильности и образование опухоли, обусловленное соматической мутацией
- •5.1.6.4. Другие факты, свидетельствующие о роли соматической мутации в механизме канцерогенеза [1520]
- •5.1.6.5. Онкогены [1686; 1690, 1691, 1696}
- •5.1.6.6. Рак у человека с точки зрения генетики
- •5.1.6.7. Соматические мутации и старение
- •5.2. Мутации, индуцированные облучением и химическими мутагенами
- •5.2.1. Мутации, индуцированные радиацией
- •5.2.1.1. Основные факты и проблемы, поставленные в ходе их анализа
- •5.2.1.2. Проблема оценки генетического риска, обусловленного радиацией и другими мутагенными факторами окружающей среды
- •5.2.1.3. Результаты изучения мутагенного действия радиации на млекопитающих [1377]
- •5.2.1.4. Облучение популяции человека ионизирующей радиацией
- •5.2.1.5. Насколько может увеличиться частота возникновения спонтанных мутаций9
- •Данные о соматических хромосомных мутациях, возникающих под воздействием радиации.
- •5.2.2. Химически индуцированные (мутации)
- •5.2.2.1. Суть проблемы
- •5.2.2.2. Исследовательские стратегии при оценке генетического риска, обусловленного химическими мутагенами
- •5.2.2.3. Каким образом химические мутагены действуют на генетический материал?
- •5.2.2.4. Насколько широким является воздействие агента на человеческую популяцию?
- •5.2.2.5. Какого увеличения частоты спонтанных мутаций, обусловленного химическими мутагенами, следует ожидать?
- •6. Популяционная генетика
- •6.1. Описание популяций
- •6.1.1. Закон Харди—Вайнберга: генные частоты
- •6.1.2. Генетический полиморфизм
- •6.1.3. Наследственные болезни
- •6.2. Систематические изменения генных частот: мутации и отбор
- •6.2.1. Естественный отбор
- •6.2.1.1. Математические модели отбора: дарвиновская приспособленность
- •6.2.1.2. Отбор, приводящий к изменению генных частот в одном направлении
- •6.2.1.3. Отбор, приводящий к генетическому равновесию
- •6.2.1.4. Отбор, приводящий к нестабильному равновесию
- •6.2.1.5. Другие формулы отбора
- •6.2.1.6. Отбор, обусловленный инфекционными болезнями [1831; 211]
- •История некоторых инфекционных заболеваний.
- •6.2.1.7. Естественный отбор и история популяций: НbЕ и β-талассемия 1)
- •6.2.1.8. Отбор по системе групп крови аво и другим полиморфным системам
- •6.3. Отклонение от случайного скрещивания
- •6.3.1. Кровнородственные браки
- •6.3.1.1. Коэффициент инбридинга [103]
- •6.3.1.2. Инбридинг, размер изолята и наследственные заболевания
- •6.3.2. Концепция генетического груза
- •6.3.2.1. Теория
- •6.3.2.2. Практическое применение теории
- •6.3.2.3. Критическая оценка
- •6.3.2.4. Более прямые подходы к оценке числа рецессивных генов на индивид
- •6.3.3. Дифференциация субпопуляций: генетическое расстояние
- •6.3.4. Поток генов
- •6.4. Случайные флуктуации генных частот
- •6.4.1. Генетический дрейф
- •6.4.2. Генетический дрейф в сочетании с мутационным процессом и отбором
- •Оглавление
- •Глава 4 Действие генов 5
- •Глава 5. Мутации 142
- •Глава 6. Популяционная генетика 278
- •Электронное оглавление
- •4. Действие генов 5
- •4.1. Развитие менделевской парадигмы 5
- •4.2. Гены и ферменты 8
- •4.7. Генетика эмбрионального развития 126
- •5. Мутации 142
- •5.1. Спонтанные мутации 142
- •5.2. Мутации, индуцированные облучением и химическими мутагенами 222
- •6. Популяционная генетика 278
- •6.1. Описание популяций 279
- •6.2. Систематические изменения генных частот: мутации и отбор 294
- •6.3. Отклонение от случайного скрещивания 339
- •6.4. Случайные флуктуации генных частот 367
4.3. Гемоглобин человека [119; 31; 97а]
Молекулу гемоглобина изучать легче, чем молекулу любого другого белка человека. Гемоглобин – основной белок эритроцитов, и для его выделения не требуется сложных биохимических методов. Неудивительно поэтому, что именно об этом белке мы знаем больше, чем обо всех остальных. Исследования по генетике гемоглобина человека, изучение аминокислотной последовательности и структуры его молекулы продвигались очень быстро. В молекулярной генетике человека они сыграли такую же роль, как изучение дрозофилы и бактериофагов в общей генетике. Большинство концепций, разработанных для этой системы, являются общими для других белков. Действительно, многие концептуальные принципы генетики человека можно иллюстрировать примерами из генетики гемоглобина.
4.3.1. История изучения гемоглобина
Серповидноклеточная анемия – «молекулярное» заболевание. Изучение гемоглобина человека началось с открытия наследственного заболевания – серповидноклеточной анемии. В 1910 г. Херрик [1121] обнаружил у студента-негра, страдающего анемией, особую аномалию эритроцитов: они были серповидной формы. Вскоре выяснилось, что такая патология довольно часто встречается у американских негров. Больные страдали от гемолитической анемии и частых болей в кишечнике и скелетных мышцах. Было показано, что больные серповидноклеточной анемией гомозиготны по гену, который в гетерозиготном состоянии (примерно у 8% американских негров) вызывает гораздо менее выраженное отклонение: присутствие в крови некоторого количества серповидных эритроцитов [1226].
Решающую роль в биохимическом и генетическом анализе этой болезни сыграла работа выдающегося химика Полинга,
4 Действие генов 71
|
Рис. 4.33. Диаграмма зонального электрофореза гемоглобинов при рН = 6,9. А Нормальная гомозигота (АА) Б Больной с серповидноклеточной анемией (SS) В Признак серповидноклеточности (AS) Г Смесь равных количеств гемоглобина А и гемоглобина S [1260] Стрелка указывает на стартовую точку электрофореза |
опубликованная под программным заголовком «Серповидноклеточная анемия, молекулярное заболевание» [1260] (Полинг узнал об этой болезни от Кастла, известного гематолога и сына одного из пионеров генетики млекопитающих, и предположил, что ее причиной может быть дефект гемоглобина ) Он писал
«Данные, имевшиеся к началу нашей работы, указывали, что процесс образования серповидных эритроцитов может быть тесно связан с состоянием и природой гемоглобина в эритроцитах»
Авторы исследовали гемоглобин людей, в крови которых обнаруживались серповидные эритроциты, гемоглобин больных серповидноклеточной анемией и гемоглобин здоровых людей В работе использовали самый совершенный в то время метод анализа белков – зональный электрофорез по Тизелиусу (рис 4 33) Пики на рисунке соответствуют градиентам концентрации гемоглобина в определенном буфере, расположение этих пиков зависит от соотношения положительных и отрицательных зарядов в молекуле белка
«Результаты указывают на существование значительных различий в электрофоретической подвижности гемоглобина, выделенного из эритроцитов здоровых людей, и гемоглобина, выделенного из эритроцитов больных серповидноклеточной анемией»
У людей, в крови которых наряду с нормальными имеются и серповидные эритроциты, обнаружено 25-40% аномального гемоглобина, такого же как у больных серповидноклеточной анемией, остальной гемоглобин был неотличим от гемоглобина нормальных индивидов Эти данные подтверждали предположение о том, что больные серповидноклеточной анемией гомозиготны по гену, который находится в гетерозиготном состоянии у людей с признаком серповидноклеточности
«Эта работа показала, что молекула белка меняется при аллельном изменении единственного гена, контролирующего его синтез»
Замена одной аминокислоты В 1956 г Ингрэм работал в Кэмбридже, в той лаборатории, где до этого Перутц исследовал кристаллографию белков, Сэнгер определил аминокислотную последовательность инсулина, а Крик и Уотсон предложили свою модель структуры ДНК Ингрэму удалось точно определить, чем нормальный гемоглобин отличается от серповидноклеточного [1138] При гидролизе молекулы глобина трипсином, расщепляющим белки, образуется около 60 пептидов, которые были разделены в двумерной системе на бумаге в одном направлении с помощью электрофореза, а в другом – с помощью хроматографии Этим методом (его называют методом «отпечатков пальцев») удалось показать, что гемоглобин серповидных эритроцитов отличается от нормального по подвижности единственного пептида При дальнейшем анализе этого пептида выяснилось, что гемоглобин серповидных эритроцитов отличается от нормального только по одной аминокислоте, глутамино-
72 4. Действие генов
вая кислота в определенном положении заменена валином.
|
В молекуле глутаминовой кислоты по сравнению с молекулой валина имеется дополнительная карбоксильная группа. Эта разница в зарядах и обусловливает различия в электрофоретической подвижности нормального и серповидноклеточного гемоглобина.
Впоследствии, по мере совершенствования методов электрофореза, стали выявляться все новые и новые варианты гемоглобина. В настоящее время их известно более 400 [1194]. Следующими вехами в изучении гемоглобина следует считать установление его полной аминокислотной последовательности (Браунитцер и др., 1961) [1016] и трехмерной структуры [1165; 1265]. Позже стали понятны структурнофункциональные взаимоотношения, были обнаружены различные типы мутаций: делеции и сдвиг рамки считывания. Выделение мРНК гемоглобина позволило по-новому взглянуть на структуру и функционирование гена, открыло новые пути к пониманию механизма его действия.
Исследования гемоглобинов на молекулярном уровне продвигались очень быстро. В настоящее время известны полные нуклеотидные последовательности ряда генов гемоглобинов вместе с фланкирующими их последовательностями, мы хорошо понимаем организацию гемоглобиновых генов, изучена природа мутаций, затрагивающих гемоглобины, в особенности при талассемиях. Следующий раздел посвящен генетике гемоглобинов.