
- •1. Переходные процессы в электрических цепях и методы их расчёта.
- •1.1 Переходные процессы в электрических цепях Основные понятия о переходных процессах
- •Законы коммутации
- •Начальные и конечные условия
- •Схемы замещения элементов в различные моменты времени
- •Классический метод анализа переходных процессов в электрических цепях
- •1.2. Переходные процессы в электрических цепях первого порядка. Анализ процессов в последовательных rl и rc цепях
- •Понятие о длительности переходного процесса и постоянной времени
- •Отключение источника
- •Определение τ для сложной цепи с одним реактивным элементом и несколькими резисторами
- •Подключение источника гармонического напряжения
- •1.3. Анализ переходных процессов в последовательной rlc-цепи п одключение источника постоянного напряжения
- •, Откуда .
- •2.2.Законы Кирхгофа в операторной форме
- •2.3.Операторные схемы замещения реактивных элементов эц
- •1) Индуктивный элемент
- •2) Емкостной элемент
- •2.4.Применение операторного метода к параллельной lc-цепи
- •2.5. Нахождение функции времени в операторном методе
- •2.6. Операторные передаточные функции в теории цепей
- •3. Временные характеристики цепи. Переходная и импульсная характеристики. Методики расчёта
- •3.1. Временные характеристики электрических цепей
- •Единичная ступенчатая функция или функция Хевисайда.
- •Единичная импульсная функция или функция Дирака.
- •3.2. Переходная характеристика, методики расчета
- •3.3. Импульсная характеристика, методики расчета
- •3.4. Пример нахождения временных характеристик
- •4. Реакция цепи на сложное кусочно-непрерывное воздействие. Интегралы Дюамеля и наложения
- •4.1. Общие понятия
- •1 Способ
- •2 Способ
- •4.2. Временной метод расчета переходных процессов
- •4.3. Расчет отклика (реакции) на прямоугольный импульс
- •4.4. Дифференцирующие и интегрирующие цепи Общие понятия
- •Дифференцирующие цепи
- •Интегрирующие цепи
- •5. Спектральный метод расчета в электрических цепях
- •5.1.Понятие о спектре периодического сигнала
- •5.2.Спектральный анализ и синтез на основе рядов Фурье
- •5.3.Графическое временное и частотное изображения спектра периодического сигнала
- •5.4.Спектр последовательности прямоугольных импульсов
- •5.5.Понятие о расчете цепей при периодических сигналах
- •Определяется комплексный спектр периодического сигнала;
- •Оценивается спектр, оставляют наиболее значащие гармоники (первый критерий: отсекаются все, который составляют менее 0,1 от максимальной по величине амплитуды гармоники);
- •Рассчитываются токи и напряжения от каждой составляющей в отдельности. Можно использовать комплексный метод расчета.
- •5.6.Понятие о спектре непериодического сигнала
- •5.7.Спектры некоторых типовых сигналов
- •Получим
- •5.8.Понятие об энергетическом спектре одиночных сигналов. Ширина спектра
- •5.9.Спектральный или частотный метод расчета в тц
- •5.10.Условия безискаженной передачи электрических сигналов
- •5.11.Прохождение импульсных сигналов через цепь с ограниченной полосой пропускания
- •1) Входной сигнал δ(t) – единичная импульсная функция
- •2) Σ(t) – единичная ступенчатая функция(скачок)
- •3) Прямоугольный импульс
- •6. Нелинейные электрические цепи
- •6.1.Основные понятия о нелинейных цепях
- •1) Статическим сопротивлением в некоторой точке
- •2) Дифференциальным сопротивлением
- •6.2.Расчет простейших нелинейных резистивных цепей
- •1) Последовательное соединение
- •2) Параллельное соединение
- •3) Смешанное соединение
- •4) Сложное соединение с одним нелинейным элементом
- •6.3. Аппроксимация характеристик нелинейных элементов
- •6.4. Определение реакции нелинейного элемента на гармоническое воздействие
- •1. Рассмотрим гармоническое воздействие малой амплитуды c постоянной составляющей
- •2 . Большая амплитуда напряжения
- •6.5. Анализ спектра реакции в нелинейном элементе
- •6.6. Преобразование сигналов в нелинейных цепях
- •Анализ спектра нэ при воздействии двух гармонических составляющих с разными частотами
- •Метод угла отсечки
- •Вопрос № 42 Нелинейные модуляторы
- •7. Цепи с обратными связями. Устойчивость эц. Автоколебательные цепи.
- •7.1.Понятие о цепях с обратными связями
- •7.2.Виды внешних обратных связей
- •7.3.Передаточные функции цепей с внешними обратными связями
- •7.4.Понятие об устойчивости эц
- •7.5.Характеристическое уравнение
- •7.6.Критерии устойчивости
- •1. Критерий Рауса-Гурвица
- •2. Критерий Михайлова
- •3. Критерий Найквиста
- •7.7. Автоколебательные цепи или автогенераторы
Начальные и конечные условия
Одной из основных задач в расчетах переходных процессов является определение начальных условий, что делается на основе законов теории цепей. Начальными условиями называются значения электрических величин в начальный момент времени t=0 (в момент коммутации). Начальные условия при переходных процессах разделяют на независимые (связаны с законами коммутации) и зависимые (все остальные). Независимые условия – токи в индуктивных элементах iL(0) и напряжения на емкостных элементах uC(0) в момент коммутации (при условии, что L и C – const они не изменяются скачком).
Аналогично для
емкости
Значения величин после окончания переходного процесса (t) называются конечными условиями или установившимися значениями. Они могут быть постоянными или периодическими.
При определении начальных и конечных условий удобно пользоваться схемами замещения элементов в различные моменты времени.
Схемы замещения элементов в различные моменты времени
Источники энергии: они представляются соответственно источниками тока и напряжения с учетом их зависимости от времени до и после коммутации.
Резисторы: если они безинерционные, так резисторами и остаются с учетом их изменения во времени. Реактивные: элементы (индуктивности и емкости) имеют специфические схемы замещения.
t Элементы |
t=0-
|
t=0
|
t=∞
|
И
uL(t)
iL(t)
|
В зависимости от источника, действующего в цепи: 1) нет источников – неопределенная ситуация; 2) ист. постоянного действия → перемычка (к.з.)
3) источник гармонического действия - сопротивление
|
При любых источниках есть два варианта: 1) нулевые нач. условия (iL(0-)=0). т.е. нет запаса энергии, то iL(0)=0 →разрыв (х.х.)
2
→источник тока
|
В зависимости от источника
|
Емкость
|
В зависимости от источника, действующего в цепи (по принципу дуальности): 1) нет источников – неопределенная ситуация; 2) ист. постоянного действия → разрыв (х.х.)
3) источник гармонического действия → сопротивление
|
При любых источниках есть два варианта: 1) нулевые нач. условия uC(0-)=0 т.е. нет запаса энергии, то uC(0)=0 → перемычка (к.з.) iC(0)=?
2) Ненулевые нач. условия uC(0-)≠0 → источник напряжения
|
В общем случае до и после коммутации схемы замещения могут быть разными (до коммутации мог быть один источник подключен, а после другой).