
- •1. Переходные процессы в электрических цепях и методы их расчёта.
- •1.1 Переходные процессы в электрических цепях Основные понятия о переходных процессах
- •Законы коммутации
- •Начальные и конечные условия
- •Схемы замещения элементов в различные моменты времени
- •Классический метод анализа переходных процессов в электрических цепях
- •1.2. Переходные процессы в электрических цепях первого порядка. Анализ процессов в последовательных rl и rc цепях
- •Понятие о длительности переходного процесса и постоянной времени
- •Отключение источника
- •Определение τ для сложной цепи с одним реактивным элементом и несколькими резисторами
- •Подключение источника гармонического напряжения
- •1.3. Анализ переходных процессов в последовательной rlc-цепи п одключение источника постоянного напряжения
- •, Откуда .
- •2.2.Законы Кирхгофа в операторной форме
- •2.3.Операторные схемы замещения реактивных элементов эц
- •1) Индуктивный элемент
- •2) Емкостной элемент
- •2.4.Применение операторного метода к параллельной lc-цепи
- •2.5. Нахождение функции времени в операторном методе
- •2.6. Операторные передаточные функции в теории цепей
- •3. Временные характеристики цепи. Переходная и импульсная характеристики. Методики расчёта
- •3.1. Временные характеристики электрических цепей
- •Единичная ступенчатая функция или функция Хевисайда.
- •Единичная импульсная функция или функция Дирака.
- •3.2. Переходная характеристика, методики расчета
- •3.3. Импульсная характеристика, методики расчета
- •3.4. Пример нахождения временных характеристик
- •4. Реакция цепи на сложное кусочно-непрерывное воздействие. Интегралы Дюамеля и наложения
- •4.1. Общие понятия
- •1 Способ
- •2 Способ
- •4.2. Временной метод расчета переходных процессов
- •4.3. Расчет отклика (реакции) на прямоугольный импульс
- •4.4. Дифференцирующие и интегрирующие цепи Общие понятия
- •Дифференцирующие цепи
- •Интегрирующие цепи
- •5. Спектральный метод расчета в электрических цепях
- •5.1.Понятие о спектре периодического сигнала
- •5.2.Спектральный анализ и синтез на основе рядов Фурье
- •5.3.Графическое временное и частотное изображения спектра периодического сигнала
- •5.4.Спектр последовательности прямоугольных импульсов
- •5.5.Понятие о расчете цепей при периодических сигналах
- •Определяется комплексный спектр периодического сигнала;
- •Оценивается спектр, оставляют наиболее значащие гармоники (первый критерий: отсекаются все, который составляют менее 0,1 от максимальной по величине амплитуды гармоники);
- •Рассчитываются токи и напряжения от каждой составляющей в отдельности. Можно использовать комплексный метод расчета.
- •5.6.Понятие о спектре непериодического сигнала
- •5.7.Спектры некоторых типовых сигналов
- •Получим
- •5.8.Понятие об энергетическом спектре одиночных сигналов. Ширина спектра
- •5.9.Спектральный или частотный метод расчета в тц
- •5.10.Условия безискаженной передачи электрических сигналов
- •5.11.Прохождение импульсных сигналов через цепь с ограниченной полосой пропускания
- •1) Входной сигнал δ(t) – единичная импульсная функция
- •2) Σ(t) – единичная ступенчатая функция(скачок)
- •3) Прямоугольный импульс
- •6. Нелинейные электрические цепи
- •6.1.Основные понятия о нелинейных цепях
- •1) Статическим сопротивлением в некоторой точке
- •2) Дифференциальным сопротивлением
- •6.2.Расчет простейших нелинейных резистивных цепей
- •1) Последовательное соединение
- •2) Параллельное соединение
- •3) Смешанное соединение
- •4) Сложное соединение с одним нелинейным элементом
- •6.3. Аппроксимация характеристик нелинейных элементов
- •6.4. Определение реакции нелинейного элемента на гармоническое воздействие
- •1. Рассмотрим гармоническое воздействие малой амплитуды c постоянной составляющей
- •2 . Большая амплитуда напряжения
- •6.5. Анализ спектра реакции в нелинейном элементе
- •6.6. Преобразование сигналов в нелинейных цепях
- •Анализ спектра нэ при воздействии двух гармонических составляющих с разными частотами
- •Метод угла отсечки
- •Вопрос № 42 Нелинейные модуляторы
- •7. Цепи с обратными связями. Устойчивость эц. Автоколебательные цепи.
- •7.1.Понятие о цепях с обратными связями
- •7.2.Виды внешних обратных связей
- •7.3.Передаточные функции цепей с внешними обратными связями
- •7.4.Понятие об устойчивости эц
- •7.5.Характеристическое уравнение
- •7.6.Критерии устойчивости
- •1. Критерий Рауса-Гурвица
- •2. Критерий Михайлова
- •3. Критерий Найквиста
- •7.7. Автоколебательные цепи или автогенераторы
3) Смешанное соединение
Последовательно строятся результирующие ВАХ: для приведенного примера, где НЭ соединен последовательно с линейным сначала для последовательного соединения, затем для параллельного (в другом случае может наоборот).
4) Сложное соединение с одним нелинейным элементом
В данном случае используется теорема об эквивалентном источнике напряжения или тока (вся цепь, кроме одного нелинейного элемента, заменяется эквивалентным источником и эквивалентным сопротивлением) и затем действуют по виду получившегося соединения.
6.3. Аппроксимация характеристик нелинейных элементов
Для того чтобы была возможность аналитически рассчитывать цепи с нелинейными элементами, необходимо иметь математические выражения для характеристик элементов. Сами эти характеристики обычно являются экспериментальными, т.е. полученными в результате измерений соответствующих элементов, а затем приводятся как справочные (типовые) данные. Процедуру математического описания некоторой заданной функции в математике называют аппроксимацией этой функции. Существует целый ряд типов аппроксимации: по выбранным точкам, по Тейлору, по Чебышеву и др. В конечном итоге необходимо получить математическое выражение, которое с какими-то заданными требованиями удовлетворяло исходной, аппроксимирующей функции. Для этого применяют полиномы: степенные, экспоненциальные и тригонометрические.
Р
ассмотрим
простейший способ: метод выбранных
точек или узлов интерполяции степенным
полиномом.
Необходимо определить коэффициенты полинома. Для этого выбирается (n+1) точка для заданной функции и составляется система уравнений:
Из решения этой системы находятся коэффициенты а0, а1, а2, …, аn.
В выбранных точках аппроксимирующая функция будет совпадать с исходной, в других точках – отличаться (сильно или нет – зависит от степенного полинома, чем больше степень, тем меньше отклонение).
Можно использовать экспоненциальный полином:,
Второй метод: метод аппроксимации по Тейлору. В этом случае выбирается одна точка, где будет совпадение исходной функции с аппроксимирующей, но дополнительно ставится условие, чтобы в этой точке совпадали еще и производные.
Аппроксимация
по Батерворту:
это частный случай тейлоровской -
выбирается простейший полином:
В этом случае можно определить максимальное отклонение ∆ и добиться, что бы оно было меньше заданной величины ε .
А
ппроксимация
по Чебышеву является тоже степенной,
там устанавливается совпадение в
нескольких точках и минимизируется
максимальное отклонение аппроксимирующей
функции от исходной.
Чебышев установил, что все отклонения должны быть одинаковы для минимизации старшей степени полинома:
В инженерной практике используется еще так называемая кусочно-линейная аппроксимация – это описание заданной кривой отрезками прямых линий, например тремя.
6.4. Определение реакции нелинейного элемента на гармоническое воздействие
1. Рассмотрим гармоническое воздействие малой амплитуды c постоянной составляющей
,
где
-
постоянная составляющая,
- амплитуда малой
величины, так что напряжение попадает
на практически линейный участок.
В этом случае можно отдельно рассмотреть реакцию на постоянную составляющую - это будет постоянная величина, и на гармоническое воздействие - это будет гармоническая функция. Здесь можно использовать понятие статического и дифференциального сопротивлений, а также графический метод построения реакции путем переноса точек временной функции с использованием вольтамперной характеристики – ВАХ (АВХ). Ток получается примерно гармоническим.
,
где
,
в точке ВАХ со смещением U0
.