
- •1. Переходные процессы в электрических цепях и методы их расчёта.
- •1.1 Переходные процессы в электрических цепях Основные понятия о переходных процессах
- •Законы коммутации
- •Начальные и конечные условия
- •Схемы замещения элементов в различные моменты времени
- •Классический метод анализа переходных процессов в электрических цепях
- •1.2. Переходные процессы в электрических цепях первого порядка. Анализ процессов в последовательных rl и rc цепях
- •Понятие о длительности переходного процесса и постоянной времени
- •Отключение источника
- •Определение τ для сложной цепи с одним реактивным элементом и несколькими резисторами
- •Подключение источника гармонического напряжения
- •1.3. Анализ переходных процессов в последовательной rlc-цепи п одключение источника постоянного напряжения
- •, Откуда .
- •2.2.Законы Кирхгофа в операторной форме
- •2.3.Операторные схемы замещения реактивных элементов эц
- •1) Индуктивный элемент
- •2) Емкостной элемент
- •2.4.Применение операторного метода к параллельной lc-цепи
- •2.5. Нахождение функции времени в операторном методе
- •2.6. Операторные передаточные функции в теории цепей
- •3. Временные характеристики цепи. Переходная и импульсная характеристики. Методики расчёта
- •3.1. Временные характеристики электрических цепей
- •Единичная ступенчатая функция или функция Хевисайда.
- •Единичная импульсная функция или функция Дирака.
- •3.2. Переходная характеристика, методики расчета
- •3.3. Импульсная характеристика, методики расчета
- •3.4. Пример нахождения временных характеристик
- •4. Реакция цепи на сложное кусочно-непрерывное воздействие. Интегралы Дюамеля и наложения
- •4.1. Общие понятия
- •1 Способ
- •2 Способ
- •4.2. Временной метод расчета переходных процессов
- •4.3. Расчет отклика (реакции) на прямоугольный импульс
- •4.4. Дифференцирующие и интегрирующие цепи Общие понятия
- •Дифференцирующие цепи
- •Интегрирующие цепи
- •5. Спектральный метод расчета в электрических цепях
- •5.1.Понятие о спектре периодического сигнала
- •5.2.Спектральный анализ и синтез на основе рядов Фурье
- •5.3.Графическое временное и частотное изображения спектра периодического сигнала
- •5.4.Спектр последовательности прямоугольных импульсов
- •5.5.Понятие о расчете цепей при периодических сигналах
- •Определяется комплексный спектр периодического сигнала;
- •Оценивается спектр, оставляют наиболее значащие гармоники (первый критерий: отсекаются все, который составляют менее 0,1 от максимальной по величине амплитуды гармоники);
- •Рассчитываются токи и напряжения от каждой составляющей в отдельности. Можно использовать комплексный метод расчета.
- •5.6.Понятие о спектре непериодического сигнала
- •5.7.Спектры некоторых типовых сигналов
- •Получим
- •5.8.Понятие об энергетическом спектре одиночных сигналов. Ширина спектра
- •5.9.Спектральный или частотный метод расчета в тц
- •5.10.Условия безискаженной передачи электрических сигналов
- •5.11.Прохождение импульсных сигналов через цепь с ограниченной полосой пропускания
- •1) Входной сигнал δ(t) – единичная импульсная функция
- •2) Σ(t) – единичная ступенчатая функция(скачок)
- •3) Прямоугольный импульс
- •6. Нелинейные электрические цепи
- •6.1.Основные понятия о нелинейных цепях
- •1) Статическим сопротивлением в некоторой точке
- •2) Дифференциальным сопротивлением
- •6.2.Расчет простейших нелинейных резистивных цепей
- •1) Последовательное соединение
- •2) Параллельное соединение
- •3) Смешанное соединение
- •4) Сложное соединение с одним нелинейным элементом
- •6.3. Аппроксимация характеристик нелинейных элементов
- •6.4. Определение реакции нелинейного элемента на гармоническое воздействие
- •1. Рассмотрим гармоническое воздействие малой амплитуды c постоянной составляющей
- •2 . Большая амплитуда напряжения
- •6.5. Анализ спектра реакции в нелинейном элементе
- •6.6. Преобразование сигналов в нелинейных цепях
- •Анализ спектра нэ при воздействии двух гармонических составляющих с разными частотами
- •Метод угла отсечки
- •Вопрос № 42 Нелинейные модуляторы
- •7. Цепи с обратными связями. Устойчивость эц. Автоколебательные цепи.
- •7.1.Понятие о цепях с обратными связями
- •7.2.Виды внешних обратных связей
- •7.3.Передаточные функции цепей с внешними обратными связями
- •7.4.Понятие об устойчивости эц
- •7.5.Характеристическое уравнение
- •7.6.Критерии устойчивости
- •1. Критерий Рауса-Гурвица
- •2. Критерий Михайлова
- •3. Критерий Найквиста
- •7.7. Автоколебательные цепи или автогенераторы
5.5.Понятие о расчете цепей при периодических сигналах
Методика расчета:
Определяется комплексный спектр периодического сигнала;
Оценивается спектр, оставляют наиболее значащие гармоники (первый критерий: отсекаются все, который составляют менее 0,1 от максимальной по величине амплитуды гармоники);
Рассчитываются токи и напряжения от каждой составляющей в отдельности. Можно использовать комплексный метод расчета.
Р
ассмотрим
RLC
- цепь с составляющими напряжения
Тогда i=I0+i1+i2+…..
I0=0
аналогично
Можно определять комплексный спектр на выходе цепи через комплексный коэффициент передачи.
Оценить негармоническую функцию можно по действующему значению, т.е. среднеквадратичному за период:
Далее показан пример спектра на выходе подобной цепи при подаче на вход последовательности прямоугольных импульсов.
5.6.Понятие о спектре непериодического сигнала
Непериодические
сигналы являются самыми важными, так
как именно они несут информацию.
Периодические сигналы являются
служебными для передачи информации, а
новой информации не несут. Поэтому
возникает вопрос спектров непериодических
сигналов. Их можно попробовать получить
предельным переходом из периодических
сигналов, устремив период к бесконечности
(
).
Тогда остается в этом случае одиночный
сигнал. Найдем комплексную амплитуду
одиночного сигнала. При этом
.
,
Следовательно непериодический сигнал можно разбить на бесконечную сумму гармонических составляющих с бесконечно малыми амплитудами и отличающихся по частоте на бесконечно малые величины – это называется сплошным спектром не периодического сигнала. Для расчетов используют понятие не комплексных амплитуд, а комплексной спектральной плотности амплитуд (только интеграл) - величины амплитуды, приходящейся на единицу частоты.
Это прямое
преобразование Фурье.
Здесь F(ω) – спектральная плотность амплитуд, ψ(ω) – спектр начальных фаз.
Размерность плотности амплитуд отличается от размерности исходного сигнала (Вс, В/Гц). Спектр непериодического сигнала похож на огибающую спектра такого же по форме периодического сигнала, но является сплошной непрерывной функцией частоты.
Одиночный сигнал можно найти по его спектру обратным преобразованием Фурье.
Свойства преобразования Фурье
Теорема линейности Если
, то
.
Теорема о дифференцировании сигнала Если
, то
.
Теорема об интегрировании сигнала Если , то
.
Теорема запаздывания Если , то
.
Теорема сжатия Если , то
.
Если
, то
.
Теорема смещения Если , то
Найдем
комплексную спектральную плотность
одиночного прямоугольного импульса
напряжения при симметричном расположении.
U(0)=Uutu
АЧС получается
как непрерывная функция частоты вида
Нулевые точки и ширина спектра такие же, как у последовательности импульсов.
(
→ширина спектра) Вывод:
Спектр
одиночного сигнала похож на спектр
последовательности таких же сигналов,
точнее соответствует огибающей спектра
дискретного сигнала, но размерности у
них разные.
Математически спектральная плотность амплитуд симметричная функция
Р
ассмотрим
несимметричное расположение сигнала.
Найдем его спектр. Это можно сделать напрямую с помощью интеграла Фурье, а можно по теореме запаздывания.
Спектральная плотность амплитуд не
изменяется, изменяется только спектр
фаз,