
- •Оглавление.
- •Введение.
- •Аминокислоты.
- •Структура белков
- •Конформация белков
- •Тема: пептиды, белки: их строение, свойства, значение в организме, методы исследования. Физико-химические свойства белков. Пептиды
- •Роль белков в организме человека
- •Методы разделения белков и пептидов:
- •Признаки коллоидного состояния:
- •Сходство растворов вмс и коллоидных растворов:
- •Отличие растворов вмс от коллоидных растворов:
- •Сходство растворов вмс с ионно-молекулярными растворами:
- •Специфические свойства растворов вмс:
- •Анализ мембранного равновесия Доннана
- •Ферменты
- •Отличие ферментов от неорганических катализаторов
- •Строение ферментов
- •Активный центр ферментов.
- •Механизм действия ферментов
- •Специфичность
- •Кинетика ферментативных реакций
- •2. Концентрация субстрата
- •РН среды
- •Активирование ферментов
- •6. Ингибирование.
- •Определение активности фермента
- •Классификация ферментов
- •Трансферазы
- •Гидролазы
- •Изомеразы
- •Лигазы (синтетазы)
- •Тема: ферменты, как биологические катализаторы
- •Классификация ферментов
- •Свойства ферментов
- •Специфичность действия ферментов
- •Активирование и ингибирование ферментов
- •Регуляция путём ковалентной модификации
- •Путь нековалентной модификации
- •Типы ингибирования
- •Конкурентное ингибирование
- •Неконкурентное ингибирование
- •Регуляция путем изменения биосинтеза ферментов
- •Компартментализация (отделение, отсек) в клетке
- •Изоферменты
- •Анализ уравнения Михаэлиса—Ментен:
- •Количественная характеристика активности фермента
- •Количественная характеристика активности ферментов в биологических жидкостях
- •Энзимодиагностика
- •Наследственные нарушения (энзимопатии)
- •Энзимотерапия
- •Липиды. Классификация липидов. Характеристика фосфолипидов и восков.
- •Обмен липидов
- •Ресинтез жирных кислот в стенке кишечника.
- •Транспорт липидов
- •Цикл трикарбоновых кислот (цикл Кребса)
- •Тема углеводы
- •Классификация углеводов
- •Моносахариды.
- •Стериоизомерия моносахаридов.
- •Циклические (полуацетальные) формы моносахаридов.
- •Основные реакции моносахаридов.
- •1. Реакции полуацетального гидроксила.
- •3. Реакции с участием карбонильной группы.
- •Олигосахариды
- •Полисахариды
- •Гетерополисахариды.
- •Промежуточный обмен углеводов в организме
- •Витамины
- •Классификация витаминов
- •Жирорастворимые витамины Витамины группы а (ретинол, антиксерофтальмический)
- •Биологическая роль
- •Витамины группы к (филлохиноны, менахиноны,антигеморрагический)
- •Витамины группы е (токоферол, антистерильный. Витамин размножения)
- •Водорастворимые витамины Витамин в1 (тиамин, антиневрический)
- •Биологическая роль
- •Витамин в2 (рибофлавин, витамин роста)
- •Витамин в6 (пиридоксин, антидермический)
- •Витамин в12 (кобаламин,антианемический)
- •Витамин с (аскорбиновая кислота, антискорбутный витамин).
- •Витамин р (рутин, цитрин, витамин проницаемости)
- •Витамин рр (никотиновая кислота, никотинамид, ниацин, антипеллагрический)
- •Авитаминоз и гиповитаминоз
- •Химия нуклеиновых кислот. Общая характеристика нуклеиновых кислот
- •Химическое строение рнк и днк.
- •Азотистое основание Углеводный компонент Фосфорная кислота
- •П уриновые Пиримидиновые Рибоза Дезоксирибоза
- •Углеводный компонент
- •Азотистое основание
- •Структура нуклеиновых кислот.
- •Вторичная структура днк характеризуется правилом э. Чаргаффа (закономерность количественного содержания азотистых оснований):
- •Тема: обмен нуклеиновых кислот и нуклеотидов в организме человека.
- •Этапы репликации:
- •Транскрипция
- •Этапы транскрипции:
- •Биосинтез белка
- •Регуляция транскрипции. Теория Оперона
- •Тема: энергетический обмен. Цикл лимонной кислоты - цикл трикарбоновых кислот (цтк), цикл Кребса - конечный общий путь окисления белков, липидов, углеводов.Цтк - амфиболический цикл.
- •Цикл лимонной кислоты — цтк — цикл Кребса
- •Энергетическая роль цтк
- •Регуляция цикла Кребса
- •Биоэнергетика. Биологическое окисление Роль кислорода в метаболизме
- •Токсичность кислорода
- •Макроэргические молекулы
- •Нуклеозидтрифосфаты
Тема: пептиды, белки: их строение, свойства, значение в организме, методы исследования. Физико-химические свойства белков. Пептиды
Пептиды — органические молекулы, в состав которых входит несколько остатков аминокислот, связанных пептидной связью. В зависимости от количества остатков аминокислот и молекулярной массы различают:
Низкомолекулярные пептиды, содержащие в своем составе от двух до десяти остатков аминокислот. Например, ди-, три-, тетра-, пента-пептиды и т. д.
Пептиды со средней молекулярной массой — от 500 до 5000 Д, так называемые «средние молекулы».
Высокомолекулярные пептиды с молекулярной массой от 5000 до 16000 Д.
Биологическое значение пептидов. Пептиды обладают значительной биологической активностью, являясь регуляторами ряда процессов жизнедеятельности. В зависимости от характера действия и происхождения пептиды делят на несколько групп:
Пептиды-гормоны: например, вазопрессин, окситоцин, глюкагон, кальцитонин, рилизинг-факторы и др.;
Пептиды, участвующие в регуляции пищеварения: гастрин, секретин, панкреатический полипептид (ПП), вазоактивный интестинальный полипептид (ВИП) и др.;
Пептиды крови: глутатион, ангиотензин, брадикинин, каллидин и др.;
Нейропептиды: пептиды памяти, пептиды сна, эндорфины, энкефалины и др.;
Пептиды, участвующие в сокращении мышц: анзерин, карнозин;
Пептиды «средние молекулы» — внутренние эндотоксины , образующиеся в организме в результате различных патологических процессов, обусловливающих тяжесть протекания заболевания.
Белки
Белки — полимеры 22 природных аминокислот со специфической структурой.
Первичная структура — последовательность аминокислотных остатков в полипептидной цепи, образуется за счет пептидных связей, возникающих за счет альфа-карбоксильной группы одной аминокислоты и альфа-аминогруппы последующей аминокислоты.
Вторичная структура — способ укладки полипептидной цепи в альфа-спираль или - структуру за счет менее прочных водородных связей (Н+ …О-).
Третичная структура — пространственная укладка - спирали или полипептидной цепи в определенную конформацию за счет четырех видов связей:
в
одородных: Н+ …О-,
ионных (солеобразующих): —NH3 + . . . ,
дисульфидных: —S—S—;
гидрофобных (сил Ван-дер-Ваальса).
Третичная структура — субъединица.
Четвертичная структура— «комплекс субъединиц способных к диссоциации, (Джон Бернал), или объединение в определенном порядке двух и большего количества субъединиц в молекулу олигомерного белка.
Например, молекула гемоглобина состоит из четырех субъединиц (по 17000 Д каждая).
Роль белков в организме человека
Ферментативная — в клетке участвуют в биохимических реакциях 2000 различных ферментов, и все они по химической природе — белки (простые или сложные).
Гормональная — в организме человека 50% всех гормонов имеют белковую природу.
Рецепторная — избирательное связывание различных регуляторов — гормонов, биогенных аминов, простагландинов, медиаторов, циклических мононуклеотидов, протекает с помощью белков-рецепторов.
Структурная (пластическая) — мембраны всех клеток и субклеточных единиц представляют собой бислой: белки и фосфолипиды, т. е. белки играют роль в формировании всех клеточных структур.
Иммунологическая — гуморальный иммунитет организма человека связан с наличием -глобулинов (антител).
Гомеостатическая — свертывание крови связано с наличием в крови белков свертывания крови (факторов).
Противосвертывающая — антитромбиновая, антитромбопластиковая и фибринолитическая системы связаны с наличием в крови соответствующих белков.
Геннорегуляторная — белки-гистоны, кислые белки играют роль в регуляции процесса трансляции.
Транспортная — перенос О2, ВЖК, липидов, стероидов, витаминов, лекарственных веществ осуществляют различные фракции белков крови.
Сократительная — в работе мышц участвуют белки: актин, миозин, тропонин и тропомиозин.
Обезвреживающая — при отравлениях солями тяжелых металлов (свинец, медь, цинк и др.) и алкалоидами противоядием являются белки (особенно молочных продуктов).
Опорная (механическая) — прочность соединительной, хрящевой и костной ткани за счет белков — коллагена, эластина, фибронектина.
Создание биопотенциалов мембран и клеток и внутренней мембраны митохондрий.
Энергетическая — 1 г. белка, окисляясь до конечных продуктов — мочевины, углекислого газа и воды, дает 4,1 ккал энергий.