
- •Оглавление.
- •Введение.
- •Аминокислоты.
- •Структура белков
- •Конформация белков
- •Тема: пептиды, белки: их строение, свойства, значение в организме, методы исследования. Физико-химические свойства белков. Пептиды
- •Роль белков в организме человека
- •Методы разделения белков и пептидов:
- •Признаки коллоидного состояния:
- •Сходство растворов вмс и коллоидных растворов:
- •Отличие растворов вмс от коллоидных растворов:
- •Сходство растворов вмс с ионно-молекулярными растворами:
- •Специфические свойства растворов вмс:
- •Анализ мембранного равновесия Доннана
- •Ферменты
- •Отличие ферментов от неорганических катализаторов
- •Строение ферментов
- •Активный центр ферментов.
- •Механизм действия ферментов
- •Специфичность
- •Кинетика ферментативных реакций
- •2. Концентрация субстрата
- •РН среды
- •Активирование ферментов
- •6. Ингибирование.
- •Определение активности фермента
- •Классификация ферментов
- •Трансферазы
- •Гидролазы
- •Изомеразы
- •Лигазы (синтетазы)
- •Тема: ферменты, как биологические катализаторы
- •Классификация ферментов
- •Свойства ферментов
- •Специфичность действия ферментов
- •Активирование и ингибирование ферментов
- •Регуляция путём ковалентной модификации
- •Путь нековалентной модификации
- •Типы ингибирования
- •Конкурентное ингибирование
- •Неконкурентное ингибирование
- •Регуляция путем изменения биосинтеза ферментов
- •Компартментализация (отделение, отсек) в клетке
- •Изоферменты
- •Анализ уравнения Михаэлиса—Ментен:
- •Количественная характеристика активности фермента
- •Количественная характеристика активности ферментов в биологических жидкостях
- •Энзимодиагностика
- •Наследственные нарушения (энзимопатии)
- •Энзимотерапия
- •Липиды. Классификация липидов. Характеристика фосфолипидов и восков.
- •Обмен липидов
- •Ресинтез жирных кислот в стенке кишечника.
- •Транспорт липидов
- •Цикл трикарбоновых кислот (цикл Кребса)
- •Тема углеводы
- •Классификация углеводов
- •Моносахариды.
- •Стериоизомерия моносахаридов.
- •Циклические (полуацетальные) формы моносахаридов.
- •Основные реакции моносахаридов.
- •1. Реакции полуацетального гидроксила.
- •3. Реакции с участием карбонильной группы.
- •Олигосахариды
- •Полисахариды
- •Гетерополисахариды.
- •Промежуточный обмен углеводов в организме
- •Витамины
- •Классификация витаминов
- •Жирорастворимые витамины Витамины группы а (ретинол, антиксерофтальмический)
- •Биологическая роль
- •Витамины группы к (филлохиноны, менахиноны,антигеморрагический)
- •Витамины группы е (токоферол, антистерильный. Витамин размножения)
- •Водорастворимые витамины Витамин в1 (тиамин, антиневрический)
- •Биологическая роль
- •Витамин в2 (рибофлавин, витамин роста)
- •Витамин в6 (пиридоксин, антидермический)
- •Витамин в12 (кобаламин,антианемический)
- •Витамин с (аскорбиновая кислота, антискорбутный витамин).
- •Витамин р (рутин, цитрин, витамин проницаемости)
- •Витамин рр (никотиновая кислота, никотинамид, ниацин, антипеллагрический)
- •Авитаминоз и гиповитаминоз
- •Химия нуклеиновых кислот. Общая характеристика нуклеиновых кислот
- •Химическое строение рнк и днк.
- •Азотистое основание Углеводный компонент Фосфорная кислота
- •П уриновые Пиримидиновые Рибоза Дезоксирибоза
- •Углеводный компонент
- •Азотистое основание
- •Структура нуклеиновых кислот.
- •Вторичная структура днк характеризуется правилом э. Чаргаффа (закономерность количественного содержания азотистых оснований):
- •Тема: обмен нуклеиновых кислот и нуклеотидов в организме человека.
- •Этапы репликации:
- •Транскрипция
- •Этапы транскрипции:
- •Биосинтез белка
- •Регуляция транскрипции. Теория Оперона
- •Тема: энергетический обмен. Цикл лимонной кислоты - цикл трикарбоновых кислот (цтк), цикл Кребса - конечный общий путь окисления белков, липидов, углеводов.Цтк - амфиболический цикл.
- •Цикл лимонной кислоты — цтк — цикл Кребса
- •Энергетическая роль цтк
- •Регуляция цикла Кребса
- •Биоэнергетика. Биологическое окисление Роль кислорода в метаболизме
- •Токсичность кислорода
- •Макроэргические молекулы
- •Нуклеозидтрифосфаты
Цикл трикарбоновых кислот (цикл Кребса)
Первая реакция катализируется ферментом, цитратсинтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалатом, в результате образуется лимонная кислота:
Вторая реакция. Образовавшаяся лимонная кислота подвергается дегидрированию с образованием цис-аконитовой кислота, которая присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат):
Третья реакция лимитирует скорость цикла Кребса. Изолимонная кислота дегидируется в присутствии НАД-зависимой изоцитратдегидрогеназы:
В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. Фермент для проявления своей активности нуждается в ионах Мg2+ или Мn2+.
Четвертая реакция. Происходит окислительное декарбоксилирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с окислительного декарбоксилирования пирувата до ацетил-КоА. В реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, НS-КоА, ФАД и НАД+.
Пятая реакция катализируется ферментом сукцинил-КоА-синтетаза. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА:
Шестая реакция. Сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД, а сам фермент прочно связан с внутренней митохондриальной мембраной:
Седьмая реакция. Фумаровая кислота под действием фермента фумаратгидратазы (фумаразы) гидратируется и получается L-яблочная кислота (малат)
Восьмая реакция. Происходит окисление L-малата в оксалоацетат под действием митохондриальной НАД-зависимой малатдегидрогеназы:
Таким образом, за один оборот цикла состоящего из 8 ферментативных реакций, происходит полное окисление одной молекулы ацетил-КоА с образованием 12 молекул АТФ.
Энергетика ЦТК:
Образуется 3 НАДН2, 1 ФАДН2 и ГТФ.
Каждая молекула НАДН2 дает в системе тканевого дыхания 3 молекулы АТФ, ФАДН2 – 2 молекулы АТФ и ГТФ – 1 молекулу АТФ.
3*3АТФ + 2АТФ + 1АТФ = 12АТФ
Тема углеводы
Термин «Углеводы», предложенный в Х1Х столетии, был основан на предположении, что все углеводы содержат 2 компонента – углерод и воду, и их элементарный состав можно выразить общей формулой Сm(H2O)n. Хотя из этого правила есть исключения и оно не абсолютно точно, тем не менее указанное определение позволяет наиболее просто охарактеризовать класс углеводов в целом.
Углеводы можно разделить на 3 основные группы в зависимости от количества составляющих их мономеров: моносахариды, олигосахариды и полисахариды.
Классификация углеводов
УГЛЕВОДЫ
Моносахариды
Олигосахариды (дисахариды, трисахариды и т.д.)
Полисахариды
Альдозы
Кетозы
Гомополисахариды
Гетерополисахариды

Дисахариды:
Сахароза
Лактоза
Глюкоза
Трисахариды:
Раффиноза
Диоксиацетон
Эритрулоза
Рибулоза
Фруктоза
Глицериновый альдегид
Эритроза
Рибоза
Глюкоза
Крахмал
Гликоген
Клетчатка (целлюлоза)
Гиалуроновая кислота
Гепарин
Хондроитинсерные кислоты