
- •Оглавление.
- •Введение.
- •Аминокислоты.
- •Структура белков
- •Конформация белков
- •Тема: пептиды, белки: их строение, свойства, значение в организме, методы исследования. Физико-химические свойства белков. Пептиды
- •Роль белков в организме человека
- •Методы разделения белков и пептидов:
- •Признаки коллоидного состояния:
- •Сходство растворов вмс и коллоидных растворов:
- •Отличие растворов вмс от коллоидных растворов:
- •Сходство растворов вмс с ионно-молекулярными растворами:
- •Специфические свойства растворов вмс:
- •Анализ мембранного равновесия Доннана
- •Ферменты
- •Отличие ферментов от неорганических катализаторов
- •Строение ферментов
- •Активный центр ферментов.
- •Механизм действия ферментов
- •Специфичность
- •Кинетика ферментативных реакций
- •2. Концентрация субстрата
- •РН среды
- •Активирование ферментов
- •6. Ингибирование.
- •Определение активности фермента
- •Классификация ферментов
- •Трансферазы
- •Гидролазы
- •Изомеразы
- •Лигазы (синтетазы)
- •Тема: ферменты, как биологические катализаторы
- •Классификация ферментов
- •Свойства ферментов
- •Специфичность действия ферментов
- •Активирование и ингибирование ферментов
- •Регуляция путём ковалентной модификации
- •Путь нековалентной модификации
- •Типы ингибирования
- •Конкурентное ингибирование
- •Неконкурентное ингибирование
- •Регуляция путем изменения биосинтеза ферментов
- •Компартментализация (отделение, отсек) в клетке
- •Изоферменты
- •Анализ уравнения Михаэлиса—Ментен:
- •Количественная характеристика активности фермента
- •Количественная характеристика активности ферментов в биологических жидкостях
- •Энзимодиагностика
- •Наследственные нарушения (энзимопатии)
- •Энзимотерапия
- •Липиды. Классификация липидов. Характеристика фосфолипидов и восков.
- •Обмен липидов
- •Ресинтез жирных кислот в стенке кишечника.
- •Транспорт липидов
- •Цикл трикарбоновых кислот (цикл Кребса)
- •Тема углеводы
- •Классификация углеводов
- •Моносахариды.
- •Стериоизомерия моносахаридов.
- •Циклические (полуацетальные) формы моносахаридов.
- •Основные реакции моносахаридов.
- •1. Реакции полуацетального гидроксила.
- •3. Реакции с участием карбонильной группы.
- •Олигосахариды
- •Полисахариды
- •Гетерополисахариды.
- •Промежуточный обмен углеводов в организме
- •Витамины
- •Классификация витаминов
- •Жирорастворимые витамины Витамины группы а (ретинол, антиксерофтальмический)
- •Биологическая роль
- •Витамины группы к (филлохиноны, менахиноны,антигеморрагический)
- •Витамины группы е (токоферол, антистерильный. Витамин размножения)
- •Водорастворимые витамины Витамин в1 (тиамин, антиневрический)
- •Биологическая роль
- •Витамин в2 (рибофлавин, витамин роста)
- •Витамин в6 (пиридоксин, антидермический)
- •Витамин в12 (кобаламин,антианемический)
- •Витамин с (аскорбиновая кислота, антискорбутный витамин).
- •Витамин р (рутин, цитрин, витамин проницаемости)
- •Витамин рр (никотиновая кислота, никотинамид, ниацин, антипеллагрический)
- •Авитаминоз и гиповитаминоз
- •Химия нуклеиновых кислот. Общая характеристика нуклеиновых кислот
- •Химическое строение рнк и днк.
- •Азотистое основание Углеводный компонент Фосфорная кислота
- •П уриновые Пиримидиновые Рибоза Дезоксирибоза
- •Углеводный компонент
- •Азотистое основание
- •Структура нуклеиновых кислот.
- •Вторичная структура днк характеризуется правилом э. Чаргаффа (закономерность количественного содержания азотистых оснований):
- •Тема: обмен нуклеиновых кислот и нуклеотидов в организме человека.
- •Этапы репликации:
- •Транскрипция
- •Этапы транскрипции:
- •Биосинтез белка
- •Регуляция транскрипции. Теория Оперона
- •Тема: энергетический обмен. Цикл лимонной кислоты - цикл трикарбоновых кислот (цтк), цикл Кребса - конечный общий путь окисления белков, липидов, углеводов.Цтк - амфиболический цикл.
- •Цикл лимонной кислоты — цтк — цикл Кребса
- •Энергетическая роль цтк
- •Регуляция цикла Кребса
- •Биоэнергетика. Биологическое окисление Роль кислорода в метаболизме
- •Токсичность кислорода
- •Макроэргические молекулы
- •Нуклеозидтрифосфаты
Ресинтез жирных кислот в стенке кишечника.
Из всосавшихся продуктов гидролиза в стенке кишечника происходит ресинтез специфичных для данного организма. Триглицеридов и фосфоглицеридов. При этом происходит последовательное присоединение к моноглицеридам активированных жирных кислот.
При синтезе фосфолипидов глицерин фосфорилируется фосфатглицеролкиназой, превращается в глицерол-3-фосфат, который затем взаимодействует с активированными жирными кислотами, образуя фосфатидную кислоту.
Транспорт липидов
Ресинтезированные триацилглицерины, фосфолипиды, холестерин и его эфиры в эпителиальных клетках кишечника соединяются |с небольшим количеством белка и образуют хиломикроны (ХМ- частицы диаметром d=0,1-5 мкм). ХМ поступают в лимфотическую систему, а оттуда – через грудной проток в кровь. Из-за большого размера хиломикроны не могут сразу всосаться в кровеносные капилляры. В хиломикронах белки и полярные части фосфолипидов расположены снаружи, а триглицериды и холестерин внутри.
По крови хиломикроны транспортируются к печени и жировой ткани. На поверхности клеток под действием фермента липопротеиназа происходит их гидролиз с образованием глицерина и жирных кислот. Часть жирных кислот поступает в клетки жировой ткани и там откладываются в виде триглицеридов, а часть образует комплексы с альбуминами сыворотки крови и оком крови разносится к тканям. В клетках тканей комплекс распадается и жирные кислоты подвергаются биологическому окислению, обеспечивая клетку энергией, либо используется для синтеза триглицеридов жировой ткани, а также липопротеинов, фосфолипидов, стеридов и др. соединений.
Жирные кислоты, как и глюкоза, является основным энергетическим материалом в организме. При повышенных энергозатратах происходит мобилизация жирных кислот из жировых депо. При этом триглицериды резервного жира последовательно расщепляются под действием фермента триглицеридлипаза (активизируется адреналином и др. гормонами), ди- и моноглицеридлипазами с образованием глицерина и жирных кислот, которые в виде комплексов с альбуминами кровью переносятся к тканям где подвергаются процессам распада или биосинтеза.
Тема: ОРГАНИЧЕСКИЕ КИСЛОТЫ.
Органические кислоты широко распространены в растительном мире. Они содержатся во всех растениях и часто накапливаются в больших количествах в семенах, стеблях, листьях, корнях или плодах. Органические кислоты образуются в результате многих процессов обмена веществ в растениях, среди которых основным следует считать дыхание.
Органические кислоты участвуют в построении молекул ряда сложных веществ — жиров, производных сахаров, витаминов и других биологически активных соединений. В растениях кислоты находятся в свободном состоянии, а также в виде кислых и нейтральных солей. Во многих плодах и ягодах большая часть приходится на свободные кислоты и лишь незначительное количество представлено солями. В некоторых растениях (например, щавеле, бегонии, суккулентах) много свободных кислот содержится и в листьях. В связанном состоянии органические кислоты обнаружены в больших количествах в листьях бобовых растений, где на их долю может приходиться до 25% сухого вещества.
При определениях содержания органических кислот или их солей следует различать: 1) общую кислотность, или общее содержание кислоты, понимая под этим общее количество анионов и недиссоциированных молекул кислоты; 2) концентрацию водородных ионов, часто обозначаемую «истинная кислотность»; 3) титруемую кислотность; под этим часто понимают концентрацию «свободной» кислоты. Однако это справедливо только для одноосновных кислот. У двуосновных кислот часть общей кислотности, которую можно титровать щелочью, состоит из двух фракций: недиссоциированной кислоты и одновалентных кислотных ионов.
При анализах органические кислоты можно экстрагировать из свежих, замороженных или высушенных растительных тканей. Однако следует иметь в виду, что при высушивании в условиях повышенной температуры могут происходить изменения в содержании органических кислот (потери летучих кислот или их эфиров, взаимные превращения кислот, взаимодействие их с углеводами и т. д.), поэтому для определения органических кислот сушить материал лучше при комнатной температуре в вакууме или применять высушивание лиофилизацией.
Для экстракции кислот можно использовать воду или органические растворители, из которых чаще всего — эфир. Однако эфир растворяет свободные кислоты, но не соли органических кислот, поэтому для экстракции солей экстрагируемый материал надо предварительно подкислять минеральной кислотой.
При экстракции водой из растительного материала, кроме кислот, извлекается много сопутствующих веществ— сахаров, пектиновых веществ, аминокислот, белков, которые перед количественным определением необходимо тщательно удалять из раствора. Удаляют эти вещества или экстракцией и осаждением, или при помощи катионо- и анионообменных смол. Эфир не извлекает углеводов, аминокислот и белков, но растворяет жиры и липоиды.