
- •Оглавление.
- •Введение.
- •Аминокислоты.
- •Структура белков
- •Конформация белков
- •Тема: пептиды, белки: их строение, свойства, значение в организме, методы исследования. Физико-химические свойства белков. Пептиды
- •Роль белков в организме человека
- •Методы разделения белков и пептидов:
- •Признаки коллоидного состояния:
- •Сходство растворов вмс и коллоидных растворов:
- •Отличие растворов вмс от коллоидных растворов:
- •Сходство растворов вмс с ионно-молекулярными растворами:
- •Специфические свойства растворов вмс:
- •Анализ мембранного равновесия Доннана
- •Ферменты
- •Отличие ферментов от неорганических катализаторов
- •Строение ферментов
- •Активный центр ферментов.
- •Механизм действия ферментов
- •Специфичность
- •Кинетика ферментативных реакций
- •2. Концентрация субстрата
- •РН среды
- •Активирование ферментов
- •6. Ингибирование.
- •Определение активности фермента
- •Классификация ферментов
- •Трансферазы
- •Гидролазы
- •Изомеразы
- •Лигазы (синтетазы)
- •Тема: ферменты, как биологические катализаторы
- •Классификация ферментов
- •Свойства ферментов
- •Специфичность действия ферментов
- •Активирование и ингибирование ферментов
- •Регуляция путём ковалентной модификации
- •Путь нековалентной модификации
- •Типы ингибирования
- •Конкурентное ингибирование
- •Неконкурентное ингибирование
- •Регуляция путем изменения биосинтеза ферментов
- •Компартментализация (отделение, отсек) в клетке
- •Изоферменты
- •Анализ уравнения Михаэлиса—Ментен:
- •Количественная характеристика активности фермента
- •Количественная характеристика активности ферментов в биологических жидкостях
- •Энзимодиагностика
- •Наследственные нарушения (энзимопатии)
- •Энзимотерапия
- •Липиды. Классификация липидов. Характеристика фосфолипидов и восков.
- •Обмен липидов
- •Ресинтез жирных кислот в стенке кишечника.
- •Транспорт липидов
- •Цикл трикарбоновых кислот (цикл Кребса)
- •Тема углеводы
- •Классификация углеводов
- •Моносахариды.
- •Стериоизомерия моносахаридов.
- •Циклические (полуацетальные) формы моносахаридов.
- •Основные реакции моносахаридов.
- •1. Реакции полуацетального гидроксила.
- •3. Реакции с участием карбонильной группы.
- •Олигосахариды
- •Полисахариды
- •Гетерополисахариды.
- •Промежуточный обмен углеводов в организме
- •Витамины
- •Классификация витаминов
- •Жирорастворимые витамины Витамины группы а (ретинол, антиксерофтальмический)
- •Биологическая роль
- •Витамины группы к (филлохиноны, менахиноны,антигеморрагический)
- •Витамины группы е (токоферол, антистерильный. Витамин размножения)
- •Водорастворимые витамины Витамин в1 (тиамин, антиневрический)
- •Биологическая роль
- •Витамин в2 (рибофлавин, витамин роста)
- •Витамин в6 (пиридоксин, антидермический)
- •Витамин в12 (кобаламин,антианемический)
- •Витамин с (аскорбиновая кислота, антискорбутный витамин).
- •Витамин р (рутин, цитрин, витамин проницаемости)
- •Витамин рр (никотиновая кислота, никотинамид, ниацин, антипеллагрический)
- •Авитаминоз и гиповитаминоз
- •Химия нуклеиновых кислот. Общая характеристика нуклеиновых кислот
- •Химическое строение рнк и днк.
- •Азотистое основание Углеводный компонент Фосфорная кислота
- •П уриновые Пиримидиновые Рибоза Дезоксирибоза
- •Углеводный компонент
- •Азотистое основание
- •Структура нуклеиновых кислот.
- •Вторичная структура днк характеризуется правилом э. Чаргаффа (закономерность количественного содержания азотистых оснований):
- •Тема: обмен нуклеиновых кислот и нуклеотидов в организме человека.
- •Этапы репликации:
- •Транскрипция
- •Этапы транскрипции:
- •Биосинтез белка
- •Регуляция транскрипции. Теория Оперона
- •Тема: энергетический обмен. Цикл лимонной кислоты - цикл трикарбоновых кислот (цтк), цикл Кребса - конечный общий путь окисления белков, липидов, углеводов.Цтк - амфиболический цикл.
- •Цикл лимонной кислоты — цтк — цикл Кребса
- •Энергетическая роль цтк
- •Регуляция цикла Кребса
- •Биоэнергетика. Биологическое окисление Роль кислорода в метаболизме
- •Токсичность кислорода
- •Макроэргические молекулы
- •Нуклеозидтрифосфаты
Путь нековалентной модификации
Регуляция по типу обратной связи.
В состав ферментов кроме активного центра может входить иной центр — аллостерический, к которому могут присоединяться низкомолекулярные вещества и изменять активность ферментов. Аллостерический (или регуляторный) центр — участок молекулы фермента, с которым связываются низкомолекулярные вещества-эффекторы (активаторы или ингибиторы). Их структура отлична от структуры субстрата. Присоединяясь к аллостерическому центру, эти вещества (эффекторы) могут изменять третичную или четвертичную структуры молекулы фермента и соответственно структуру активного центра, вызывая увеличение или уменьшение его активности. Таким образом, связывание фермента с эффектором в одном участке белка вызывает изменение структуры и, следовательно, активности — в другом.
Активаторы увеличивают активность ферментов, а ингибиторы уменьшают. Часто биохимический процесс состоит из нескольких стадий, которые катализируются своими ферментами. В таких системах есть хотя бы один фермент — регуляторный, который определяет скорость всей последовательности реакций. Регуляторные ферменты под действием эффекторов способны включать и выключать целые цепи реакций метаболизма. Соединения, действующие как ингибиторы этих ферментов, обычно являются конечными продуктами всей цепи реакций. Систему регуляции этого типа, когда избыток продукта одной из последовательных реакций биохимического пути ингибирует активность фермента одной из ранних стадий, блокируя эту и все последующие стадии, называют ингибированием по типу обратной связи. Таким образом, накопление избытка продукта ведет к торможению его биосинтеза.
Типы ингибирования
Различают обратимое и необратимое ингибирование ферментов. Ингибирование является необратимым, если ингибитор необратимо связывается с ферментом (образованный комплекс субстрат-ингибитор не распадается). Многие ингибиторы необратимо связываются с ферментами, изменяя их структуру. Этим объясняется токсичное действие ионов металлов: Hg2+, Zn2+.
Е — SH + Ag+ Е — S — Ag + H+;
в противном случае наблюдается обратимое ингибирование. Обратимое ингибирование, может быть конкурентное и неконкурентное.
Конкурентное ингибирование
Конкурентное ингибирование наблюдается, когда ингибитор и субстрат имеют сходные структуры и конкурируют за связывание с активным центром фермента. Если к ферменту Е добавить конкурентный ингибитор I и субстрат S, то одновременно образуется два комплекса: фермент-ингибитор (EI) и фермент-субстратный (ES). Образование комплекса EI не приводит к образованию продуктов реакции.
Е + S ES P + Е;
Е + I EI не образуются продукты реакции
Скорость реакции уменьшается, потому что при присоединении ингибитора к активному центру субстрата уменьшается число активных центров фермента, способных взаимодействовать с природным субстратом. Поскольку конкурентный ингибитор связывается обратимо, с ферментом, то уменьшить его действие можно, увеличивая концентрацию субстрата, так как при этом увеличивается вероятность связывания фермента с субстратом.
Неконкурентное ингибирование
Неконкурентное ингибирование наблюдается, когда ингибитор и фермент не сходны по структуре и ингибитор присоединяется к регуляторному центру фермента. При этом образуется тройной комплекс: фермент-ингибитор-субстрат, который не приводит к образованию продуктов реакции. В данном типе ингибирования влияние ингибитора не может быть преодолено повышением концентрации субстрата.