
- •§ 1. Цели и задачи курса «Детали машин», его связь с другими предметами
- •§ 2. Основные направления в развитии машиностроения. Требования, предъявляемые к проектируемым машинам, узлам и деталям
- •§ 3. Основные критерии работоспособности и расчета деталей машин
- •§ 4. Проектировочные и проверочные расчеты
- •§ 5. Предельные и допускаемые напряжения. Коэффициент запаса прочности
- •§ 6. Краткие сведения о машиностроительных материалах и основах их выбора
- •Часть I
- •Глава 1
- •§ 1. Назначение и роль передач в машинах
- •§ 2. Классификация механических передач
- •§ 3. Основные кинематические и силовые отношения в передачах
- •§ 4. Механизмы преобразования одного вида движения в другой (общие сведения)
- •1.8. Рычажные механизмы.
- •1.9. Кулачковые механизмы.
- •1.10. Храповые механизмы.
- •1.11. Мальтийский механизм (крест).
- •Глава 2
- •§ 1. Общие сведения
- •§ 2. Геометрические параметры, кинематические и силовые соотношения во фрикционных передачах
- •§ 3. Цилиндрическая фрикционная передача. Устройство, основные геометрические и силовые соотношения
- •§ 4. Расчет на прочность цилиндрической фрикционной передачи
- •§ 5. Коническая фрикционная передача.
- •§ 6. Вариаторы
- •Глава 3
- •§ 1. Общие сведения и классификация зубчатых передач
- •§ 2. Краткие сведения о методах изготовления зубчатых колес, их конструкциях, материалах
- •§ 3. Основные элементы зубчатой передачи. Термины, определения и обозначения
- •§ 4. Основная теорема зубчатого зацепления.
- •§ 5. Краткие сведения о корригировании зацеплений
- •§ 6. Виды разрушений зубьев
- •§ 7. Цилиндрические прямозубые передачи. Устройство и основные геометрические соотношения
- •§ 8. Расчет зубьев цилиндрической прямозубой передачи на изгиб
- •3.36. В каком случае проводят проверочный расчет зубчатой передачи на изгиб?
- •§ 9. Расчет цилиндрической прямозубой передачи на контактную прочность
- •§ 10. Последовательность проектировочного расчета цилиндрической прямозубой передачи
- •§11. Цилиндрические косозубые и шевронные зубчатые передачи. Устройство и основные геометрические и силовые соотношения
- •§ 12. Расчет зубьев цилиндрической косозубой и шевронной передач на изгиб
- •§ 13. Расчет цилиндрической косозубой и шевронной передач на контактную прочность
- •§ 14. Последовательность проектировочного расчета цилиндрической косозубой передачи
- •§ 15. Конические зубчатые передачи. Устройство и основные геометрические и силовые соотношения
- •§ 16. Расчет зубьев прямозубой конической передачи на изгиб
- •§ 17. Расчет конических прямозубых передач на контактную прочность
- •§ 18. Последовательность проектировочного расчета конической зубчатой передачи
- •§ 19. Зубчатые передачи с зацеплением Новикова. Устройство, основные геометрические соотношения
- •§ 20. Расчет передачи с зацеплением Новикова на контактную прочность
- •§ 21. Планетарные зубчатые передачи. Устройство передачи и расчет на прочность
- •3.88. Достоинства и недостатки планетарных передач.
- •§ 22. Волновые зубчатые передачи. Устройство передачи и расчет на прочность
- •Глава 4
- •§ 1. Устройство и назначение, достоинства и недостатки
- •§ 2. Расчет передачи винт-гайка на прочность
- •Глава 5
- •§ 1. Общие сведения, устройство передачи, материалы, область применения, достоинства и недостатки
- •§ 2. Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком
- •§ 3. Основные критерии работоспособности червячных передач и расчет их на прочность
- •§ 4. Расчет червячной передачи на контактную прочность
- •§ 5. Расчет червячной передачи на прочность по напряжениям изгиба
- •§ 6. Тепловой расчет червячной передачи
- •§ 7. Последовательность проектировочного расчета червячных передач
- •Глава 6
- •§ 1. Общие сведения
- •§ 2. Плоскоременная передача.
- •§ 3. Геометрия передачи, кинематические соотношения и кпд плоскоременной передачи
- •§ 4. Клиноременная передача.
- •§ 5. Основы теории расчета ременных передач. Силы и напряжения в ремнях, кривые скольжения и допускаемые полезные напряжения
- •§ 6. Расчет плоскоременной передачи по тяговой силе. Долговечность передачи
- •§ 7. Расчет клиноременной передачи на тяговую способность и долговечность
- •§ 1. Цепные передачи
- •§ 2. Конструкции приводных цепей и звездочек
- •§ 3. Основные геометрические и кинематические соотношения, кпд передачи
- •§ 4. Силы в ветвях цепи и критерии работоспособности цепной передачи
- •§ 5. Методика подбора и проверки цепей с учетом их долговечности
- •§ 6. Цепные вариатор
- •Часть II
- •Глава 8 валы и оси
- •§ 1. Назначение, конструкция и материалы валов и осей
- •§ 2. Критерии работоспособности и расчет валов и осей
- •§ 3. Расчет осей на статическую прочность
- •§ 4. Приближенный расчет валов на прочность
- •§ 5. Уточненный расчет валов (осей) на выносливость
- •§ 6. Расчет осей и валов на жесткость
- •Глава 9
- •§ 1. Назначение и краткая характеристика основных типов, достоинства и недостатки, область применения шпоночных и шлицевых соединений
- •§ 2. Расчет на прочность соединений с призматическими шпонками
- •§ 3. Расчет на прочность прямобочных шлицевых (зубчатых) соединений
- •§ 4. Штифтовые и профильные соединения
- •§ 5. Соединение деталей с гарантированным натягом
- •Глава 10
- •§ 1. Назначение, типы, область применения, разновидности конструкций подшипников скольжения и подпятников, материалы для их изготовления
- •10.2. Конструкции подшипников скольжения.
- •§ 2. Условный расчет подшипников скольжения и подпятников
- •§ 3. Работа подшипников скольжения при жидкостном режиме смазки и понятие об их расчете
- •Глава 11 подшипники качения
- •§ 1. Общие сведения. Классификация и область применения
- •§ 2. Сравнительная характеристика подшипников качения и скольжения
- •§ 3. Методика подбора подшипников качения
- •§ 4. Способы повышения долговечности подшипниковых узлов
- •§ 5. Конструкции узлов
- •§ 6. Смазывание подшипников качения
- •§ 7. Уплотнения в подшипниковых узлах
- •Глава 12 муфты
- •§ 1. Общие сведения
- •§ 2. Жесткие (глухие) муфты
- •§ 3. Компенсирующие муфты
- •§ 4. Сцепные муфты
- •§ 5. Самоуправляемые муфты
- •§ 6. Предохранительные муфты
- •§ 7. Краткие сведения о выборе и расчете муфт
- •Часть III
- •Глава 13
- •§ 1. Виды резьбовых соединений
- •§ 2. Конструкции резьбовых деталей и применяемые материалы
- •§ 3. Зависимость между моментом, приложенным к гайке, и осевой силой
- •§ 4. Расчет резьбового соединения на прочность при осевом и поперечном статическом нагружении
- •§ 6. Некоторые рекомендации по расчету на прочность, включающего группу болтов
- •Глава 14
- •§ 1. Общие понятия, образование заклепочных швов, достоинства, недостатки и область применения
- •§ 2. Классификация заклепочных швов, конструкции заклепок и их материалы
- •Контрольная карточка 14.1
- •§ 3. Расчет прочных заклепочных швов
- •§ 4. Проектировочный расчет прочных заклепочных швов при заданной нагрузке и заданном типе шва
- •Глава 15
- •§ 1. Общие сведения о сварных соединениях
- •§ 2. Классификация и разновидности сварных соединений (швов)
- •§ 3. Расчет сварных стыковых и нахлесточных соединений
- •§ 4. Краткие сведения о клеевых соединениях
- •Глава 1
- •Глава 2
- •Глава 3
§ 6. Смазывание подшипников качения
11.26. Смазывание подшипников качения предохраняет их от коррозии, уменьшает шум при работе и потери на трение скольжения между кольцами и телами качения, между сепаратором и телами качения, улучшает отвод тепла.
Для смазывания подшипников качения применяют жидкие и пластичные смазывающие материалы.
В чем состоит принципиальное различие назначения смазывания в подшипниках качения и скольжения?
11.27. Жидкие смазочные материалы (масла) применяют при больших частотах вращения подшипника в условиях высоких и низких температур.
Достоинства применения жидких смазочных материалов: возможность централизованного смазывания с автоматизацией процесса подачи смазочного материала. Применение жидкого смазочного материала допускает полную его смену без разборки узла, хорошо отводит тепло. Периодичность замены масла — 3—6 месяцев, пополнение — 1—2 раза в месяц.
11.28. Пластичный смазочный материал набивают в корпус подшипника при сборке узла и пополняют один раз в два—четыре месяца. Полную замену смазочного материала производят не реже одного раза в год.
Недостатки пластичной смазки; необходимость разборки узла при замене смазочного материала, чувствительность к изменению температуры, повышенное внутреннее трение; возможность применения только при сравнительно низких угловых скоростях вращающихся колец.
Перечислите недостатки применения жидкого смазочного материала по сравнению с пластичным для подшипников качения.
Пластичные смазочные материалы по сравнению с жидкими имеют следующие преимущества: не вытекают из узлов при нормальных условиях ра-боты; лучше защищают подшипники от коррозии; могут работать в узле без пополнения в течение продолжительного времени (до одного года) и без особого надзора; требуют менее сложных конструкций угаготнительных устройств.
Подшипники редуктора смазывают пластичной смазкой. Какие особенности конструкции позволяют сделать это?
§ 7. Уплотнения в подшипниковых узлах
11.29. Надежность подшипников качения во многом зависит от типа уплотняющих устройств. Уплотнения в подшипниковых узлах должны не допускать утечки смазочного материала из корпуса, где установлены подшипники, а также защищать подшипники от попадания в них пыли, грязи и абразивных частиц, вызывающих их преждевременное изнашивание.
Уплотнения, применяемые в машиностроении, подразделяют на: контактные, щелевые, лабиринтные и защитные мазеудерживающие кольца и маслоотражательные шайбы.
К какому типу, по Вашему мнению, относятся уплотнительные устройства, показанные на рис. 11.9?
11.30. Работа контактных уплотнений зависит от выбора материалов, устанавливаемых в крышках корпуса подшипника и контактирующих с валом, на котором находится подшипник.
Наибольшее распространение получили контактные уплотнения из войлочных, фетровых и кожаных колец (рис. 11.9, а, б). Основное достоинство уплотнений этого типа — простота и дешевизна изготовления.
Этот тип уплотнений рекомендуется применять при незначительных окружных скоростях (до 4, 5 м/с) и температуре окружающей среды до
90 °С. Вал (или промежуточная втулка) должен быть обработан с достаточной точностью.
Для того чтобы уплотняющий материал лучше прилегал к вращающемуся валу, в конструкцию включают браслетную пружину. Такие уплотнения называют манжетными (рис. 11.9, д). Пружина должна прижимать уплотняющий материал к валу с незначительной силой (для уменьшения изнашивания и нагрева вала).
Манжетные уплотнения работают при окружных скоростях до 10 м/с, с температурой узла до 100 °С.
11.31. Щелевые и лабиринтные уплотнения устраняют недостатки, имеющие место в уплотнениях контактного типа.
Щелевые уплотнения (рис. 11.9, г) имеют две-три кольцевые канавки в крышке корпуса подшипника (зазор с = 0,1 ч- 0,4 мм). Канавки и зазор оказывают значительное гидравлическое сопротивление вытекающему из корпуса смазочному материалу.
Аналогично устроено лабиринтное уплотнение. В уплотнении этого типа радиальные и осевые щели делают сложной формы, напоминающей лабиринт (рис. 11.9, в).
Лабиринтные и щелевые уплотнения работают при окружных скоростях до 30 м/с.
Недостатком этих уплотнений является ненадежная защита смазочного материала от пыли и невозможность их применения при высокой температуре.
11.32. Ответить на вопросы контрольной карточки 11.3.
Контрольная карточка 11.3
Вопрос |
Ответы |
Код |
На рис. 11.10 показано два варианта монтажа подшипников качения. В каком случае удобнее монтировать прашлй подшипник качения? |
Рис. 11.10, а Рис. 11.10, б |
1 2 |
Какая система смазывания подшипников качения у прямозубого редуктора, показанного на рис. 11.11? |
Пластичная Жидкая в масляной ванне Масляным туманом Жидкая под давлением |
3 4 5 6 |
Какая из указанных на рис. 11.12 конструкций подшипникового узла будет надежнее в работе? |
Рис. 11.12, а Рис. 11.12, б |
7 8 |
Какую нагрузку воспринимает подшипник 1 в подшипниковом узле, показанном на рис. 11.13? |
Радиальную Fr Осевую Fa Fr+Fa Нагрузки не воспринимает |
9 10 11 12 |
Определите тип уплотнения в подшипниковом узле, показанном на рис. 11.12, б |
Контактное Мазеудерживающее кольцо Щелевое Лабиринтное Комбинированное |
13 14 15 16 17 |
Рис. 11.10
Рис. 11.11
Рис. 11.13
Ответы на вопросы
11.1. Подшипники ведущего вала (поз. 6 и 7). Подшипники — роликовые.
11.2. Подшипники качения принципиально отличаются от подшипников скольжения тем, что в них трение скольжения заменено трением качения.
11.6. Для подшипника 50312 внутренний диаметр d=60 мм, серия — средняя. 2404 — радиальный с короткими цилиндрическими роликами
подшипник тяжелой серии с внутренним диаметром 20 мм, класс точности — нормальный.
11.7. Роликовые радиальные подшипники с короткими роликами (2412) осевых нагрузок воспринимать не могут.
11.9. К радиальным подшипникам относятся: шариковый радиальный однорядный подшипник; шариковый радиальный двухрядный сферический; роликовый радиальный подшипник с короткими цилиндрическими роликами; роликовые радиальные двухрядные сферические; игольчатые подшипники; роликовый радиальный подшипник с витыми роликами.
К радиально-упорным: шариковый радиально-упорный однорядный подшипник; роликовый конический (радиально-упорный).
К упорным: шариковый упорный подшипник, роликовый упорный.
11.12. Применение подшипников качения не всегда рационально. В некоторых случаях из-за габаритных размеров или по условиям монтажа устанавливать подшипники качения (например, шатунные и коренные подшипники и т. п.) нельзя. Кроме того, при больших радиальных нагрузках (особенно ударных) подшипники качения применять нецелесообразно.
В некоторых случаях по конструктивным, эксплуатационным или технологическим причинам необходимо устанавливать только подшипники скольжения (как разъемные, так и неразъемные).
11.13. Тип 2000 (роликовые радиальные с короткими цилиндрическими роликами), тип 3000 (роликовые радиальные двухрядные сферические), тип 4000 (игольчатые), тип 5000 (роликовые радиальные с витыми роликами), тип 7000 (роликовые конические радиально-упорные), тип 9000 (роликовые упорные).
11.15. Для редуктора с шевронными зубчатыми колесами можно применять любой тип радиальных подшипников, так как в этом случае на подшипник действуют только радиальные нагрузки Ft и Fr (в зубчатой шевронной передаче осевая нагрузка не возникает).
11.17. По статической грузоподъемности подбирают подшипники, частота вращения которых не превышает 1 об/мин (ω ≤ 0,1 рад/с) или, в случае, когда подшипник воспринимает внешнюю нагрузку в неподвижном состоянии.
11.20. Основные виды разрушения деталей подшипников: поломка деталей, абразивное изнашивание, заедание деталей, усталостное выкрашивание.
11.21. Обеспечение нормальных условий работы (смазывание и т. п.), высокое качество изготовления подшипников качения на заводе-изготовителе, рациональная конструкция узла повышает долговечность подшипников качения.
11.23. Из перечисленных в шаге 11.23 требований к проектированию подшипниковых узлов выделить основное нельзя, так как все перечисленные требования направлены на создание рациональной конструкции подшипникового узла и, следовательно, важны. Обязательное требование — надежность и долговечность.
11.26. В подшипниках качения смазывание играет вспомогательную роль, главным образом уменьшая трение скольжения тел, качения о сепаратор.
11.28. Недостатки применения жидкого смазочного материала: необходимость более частого пополнения; необходимость в более сложных конструкциях уплотнений.
Для редукторов возможность пластичной смазки обеспечивается наличием мазеудерживающего кольца или маслоотражательной шайбы с внутренней стороны редуктора и отверстия для пресс-масленки.
11.29. Типы угоготнительных устройств (рис. 11.9): а — защитное кольцо (справа), контактное уплотнение (слева); б, д, е — контактные уплотнения 1; в — лабиринтное уплотнение 2; г — щелевое уплотнение 3.