
- •§ 1. Цели и задачи курса «Детали машин», его связь с другими предметами
- •§ 2. Основные направления в развитии машиностроения. Требования, предъявляемые к проектируемым машинам, узлам и деталям
- •§ 3. Основные критерии работоспособности и расчета деталей машин
- •§ 4. Проектировочные и проверочные расчеты
- •§ 5. Предельные и допускаемые напряжения. Коэффициент запаса прочности
- •§ 6. Краткие сведения о машиностроительных материалах и основах их выбора
- •Часть I
- •Глава 1
- •§ 1. Назначение и роль передач в машинах
- •§ 2. Классификация механических передач
- •§ 3. Основные кинематические и силовые отношения в передачах
- •§ 4. Механизмы преобразования одного вида движения в другой (общие сведения)
- •1.8. Рычажные механизмы.
- •1.9. Кулачковые механизмы.
- •1.10. Храповые механизмы.
- •1.11. Мальтийский механизм (крест).
- •Глава 2
- •§ 1. Общие сведения
- •§ 2. Геометрические параметры, кинематические и силовые соотношения во фрикционных передачах
- •§ 3. Цилиндрическая фрикционная передача. Устройство, основные геометрические и силовые соотношения
- •§ 4. Расчет на прочность цилиндрической фрикционной передачи
- •§ 5. Коническая фрикционная передача.
- •§ 6. Вариаторы
- •Глава 3
- •§ 1. Общие сведения и классификация зубчатых передач
- •§ 2. Краткие сведения о методах изготовления зубчатых колес, их конструкциях, материалах
- •§ 3. Основные элементы зубчатой передачи. Термины, определения и обозначения
- •§ 4. Основная теорема зубчатого зацепления.
- •§ 5. Краткие сведения о корригировании зацеплений
- •§ 6. Виды разрушений зубьев
- •§ 7. Цилиндрические прямозубые передачи. Устройство и основные геометрические соотношения
- •§ 8. Расчет зубьев цилиндрической прямозубой передачи на изгиб
- •3.36. В каком случае проводят проверочный расчет зубчатой передачи на изгиб?
- •§ 9. Расчет цилиндрической прямозубой передачи на контактную прочность
- •§ 10. Последовательность проектировочного расчета цилиндрической прямозубой передачи
- •§11. Цилиндрические косозубые и шевронные зубчатые передачи. Устройство и основные геометрические и силовые соотношения
- •§ 12. Расчет зубьев цилиндрической косозубой и шевронной передач на изгиб
- •§ 13. Расчет цилиндрической косозубой и шевронной передач на контактную прочность
- •§ 14. Последовательность проектировочного расчета цилиндрической косозубой передачи
- •§ 15. Конические зубчатые передачи. Устройство и основные геометрические и силовые соотношения
- •§ 16. Расчет зубьев прямозубой конической передачи на изгиб
- •§ 17. Расчет конических прямозубых передач на контактную прочность
- •§ 18. Последовательность проектировочного расчета конической зубчатой передачи
- •§ 19. Зубчатые передачи с зацеплением Новикова. Устройство, основные геометрические соотношения
- •§ 20. Расчет передачи с зацеплением Новикова на контактную прочность
- •§ 21. Планетарные зубчатые передачи. Устройство передачи и расчет на прочность
- •3.88. Достоинства и недостатки планетарных передач.
- •§ 22. Волновые зубчатые передачи. Устройство передачи и расчет на прочность
- •Глава 4
- •§ 1. Устройство и назначение, достоинства и недостатки
- •§ 2. Расчет передачи винт-гайка на прочность
- •Глава 5
- •§ 1. Общие сведения, устройство передачи, материалы, область применения, достоинства и недостатки
- •§ 2. Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком
- •§ 3. Основные критерии работоспособности червячных передач и расчет их на прочность
- •§ 4. Расчет червячной передачи на контактную прочность
- •§ 5. Расчет червячной передачи на прочность по напряжениям изгиба
- •§ 6. Тепловой расчет червячной передачи
- •§ 7. Последовательность проектировочного расчета червячных передач
- •Глава 6
- •§ 1. Общие сведения
- •§ 2. Плоскоременная передача.
- •§ 3. Геометрия передачи, кинематические соотношения и кпд плоскоременной передачи
- •§ 4. Клиноременная передача.
- •§ 5. Основы теории расчета ременных передач. Силы и напряжения в ремнях, кривые скольжения и допускаемые полезные напряжения
- •§ 6. Расчет плоскоременной передачи по тяговой силе. Долговечность передачи
- •§ 7. Расчет клиноременной передачи на тяговую способность и долговечность
- •§ 1. Цепные передачи
- •§ 2. Конструкции приводных цепей и звездочек
- •§ 3. Основные геометрические и кинематические соотношения, кпд передачи
- •§ 4. Силы в ветвях цепи и критерии работоспособности цепной передачи
- •§ 5. Методика подбора и проверки цепей с учетом их долговечности
- •§ 6. Цепные вариатор
- •Часть II
- •Глава 8 валы и оси
- •§ 1. Назначение, конструкция и материалы валов и осей
- •§ 2. Критерии работоспособности и расчет валов и осей
- •§ 3. Расчет осей на статическую прочность
- •§ 4. Приближенный расчет валов на прочность
- •§ 5. Уточненный расчет валов (осей) на выносливость
- •§ 6. Расчет осей и валов на жесткость
- •Глава 9
- •§ 1. Назначение и краткая характеристика основных типов, достоинства и недостатки, область применения шпоночных и шлицевых соединений
- •§ 2. Расчет на прочность соединений с призматическими шпонками
- •§ 3. Расчет на прочность прямобочных шлицевых (зубчатых) соединений
- •§ 4. Штифтовые и профильные соединения
- •§ 5. Соединение деталей с гарантированным натягом
- •Глава 10
- •§ 1. Назначение, типы, область применения, разновидности конструкций подшипников скольжения и подпятников, материалы для их изготовления
- •10.2. Конструкции подшипников скольжения.
- •§ 2. Условный расчет подшипников скольжения и подпятников
- •§ 3. Работа подшипников скольжения при жидкостном режиме смазки и понятие об их расчете
- •Глава 11 подшипники качения
- •§ 1. Общие сведения. Классификация и область применения
- •§ 2. Сравнительная характеристика подшипников качения и скольжения
- •§ 3. Методика подбора подшипников качения
- •§ 4. Способы повышения долговечности подшипниковых узлов
- •§ 5. Конструкции узлов
- •§ 6. Смазывание подшипников качения
- •§ 7. Уплотнения в подшипниковых узлах
- •Глава 12 муфты
- •§ 1. Общие сведения
- •§ 2. Жесткие (глухие) муфты
- •§ 3. Компенсирующие муфты
- •§ 4. Сцепные муфты
- •§ 5. Самоуправляемые муфты
- •§ 6. Предохранительные муфты
- •§ 7. Краткие сведения о выборе и расчете муфт
- •Часть III
- •Глава 13
- •§ 1. Виды резьбовых соединений
- •§ 2. Конструкции резьбовых деталей и применяемые материалы
- •§ 3. Зависимость между моментом, приложенным к гайке, и осевой силой
- •§ 4. Расчет резьбового соединения на прочность при осевом и поперечном статическом нагружении
- •§ 6. Некоторые рекомендации по расчету на прочность, включающего группу болтов
- •Глава 14
- •§ 1. Общие понятия, образование заклепочных швов, достоинства, недостатки и область применения
- •§ 2. Классификация заклепочных швов, конструкции заклепок и их материалы
- •Контрольная карточка 14.1
- •§ 3. Расчет прочных заклепочных швов
- •§ 4. Проектировочный расчет прочных заклепочных швов при заданной нагрузке и заданном типе шва
- •Глава 15
- •§ 1. Общие сведения о сварных соединениях
- •§ 2. Классификация и разновидности сварных соединений (швов)
- •§ 3. Расчет сварных стыковых и нахлесточных соединений
- •§ 4. Краткие сведения о клеевых соединениях
- •Глава 1
- •Глава 2
- •Глава 3
§ 5. Коническая фрикционная передача.
Устройство и основные геометрические соотношения
2.22. Фрикционную передачу с пересекающимися валами и катками, рабочие поверхности которых конические, называют фрикционной конической передачей. На рис. 2.10 показана фрикционная коническая передача с нерегулируемым передаточным числом. Ее устройство аналогично цилиндрической фрикционной передаче. Прижимной каток конической передачиобычно меньший, так как при этом необходима меньшая сила нажатия. Угол ∑ между осями валов (рис. 2.10) может быть различным. Как правило, межосевой угол передачи
∑ = δ1+δ2 = 90°, (2.19)
где δ1 — угол при вершине конуса ведущего катка; δ2 — угол при вершине конуса ведомого катка. Для нормальной работы передачи необходимо, чтобы общая вершина конусов лежала в точке пересечения геометрических осей валов. Коническая фрикционная передача может быть нереверсивной (чаще) и реверсивной. Ее применяют для передачи небольшой мощности (до 25 кВт).
Опишите кратко устройство конической фрикционной передачи. Какой каток делается прижимным в конической фрикционной передаче?
2.23. Геометрические параметры конической фрикционной передачи (см. рис. 2.10).
Рис. 2.10. Геометрические параметры конической фрикционной передачи
1. Внешнее конусное расстояние
(2.20)
cреднее конусное расстояние Rm = Re - 0,5b; т — индекс среднего сечения.
2. Внешний диаметр ведущего катка
(2.21)
3. Диаметр ведомого катка
(2.22)
Длина линии контакта
b=ReΨR , (2.23)
где ΨR = 0,25 ÷ 0,3 — коэффициент длины линии контакта.
5. Ширина обода катка
bK1 = bcosδ1; bK2 = bcosδ2. (2.24)
6. Средний диаметр ведущего катка
(2.25)
7. Средний диаметр ведомого катка
Dm2 =De2 -2(1/2 bsinδ2) = De2 -bsinδ2, (2.26)
u= De2/De1
отсюда De] = De2/u.
Подставив в формулу (2.20) значение De1 = De2/u, получим
2.24. Силы в передаче.
В конической фрикционной передаче действующие силы определяют по размерам средних сечений катков (см. рис. 2.10).
Условие работоспособности для конической фрикционной передачи аналогичное ранее рассмотренному.
Силу нажатия катков Fn определяют по формуле
(2.27)
где Ft=2T/Dm.
Силу Fn можно разложить на осевую Fa2 и радиальную Fr2 составляющие (см. рис. 2.10).
Осевая сила ведущего катка
(2.28)
ведомого катка
(2.29)
Радиальные силы катков
Fr1=Fa2; Fr2=Fa1. (2.30)
Зависит ли сила нажатия катков от коэффициента трения? Если да, то как? От каких геометрических параметров передачи зависит эта сила?
§ 6. Вариаторы
2.25. Фрикционный механизм, предназначенный для бесступенчатого регулирования передаточного числа, называют фрикционным вариатором или просто вариатором.
Вариаторы выполняют в виде отдельных одноступенчатых механизмов с непосредственным касанием катков без промежуточного диска (см. рис. 2.11) или с промежуточным диском (см. рис. 2.12 и 2.13). Основная кинематическая характеристика вариатора — диапазон регулирования угловой скорости (передаточного числа) ведомого вала при постоянной угловой скорости ведущего вала:
(2.31)
Что является основной кинематической характеристикой вариатора? Дайте определение.
2.26. Лобовые вариаторы (см. рис. 2.11). Ведущий каток / радиуса /?, устанавливается на валу на скользящей шпонке и может перемещаться вдоль оси. Ведомый каток 2 радиуса R2 закреплен на валу неподвижно. За счет нажимного устройства создается сила трения, необходимая для работы вариатора. Бесступенчатое изменение угловой скорости в этом вариаторе достигается перемещением вдоль вала ведущего катка 1; при этом R1 = const; R2 ≠ const. Отсюда передаточное число
и ≈ R2/ R1 ≠ const, (2.32)
здесь не учитывается проскальзывание катков, поэтому равенство приближенное.
Рис. 2.11. Лобовой вариатор: 1 — ведущий каток; 2 — ведомый каток
Лобовой вариатор позволяет изменять направление и частоту вращения ведомого вата, останавливать его на ходу без выключения привода.
Увеличится или уменьшится передаточное отношение вариатора (см. рис. 2.11), если малый каток перемещать к центру большого? Как классифицировать лобовой вариатор по взаимному расположению осей валов?
2.27. Торовые вариаторы (см. рис. 2.12). На концы валов насажены две торовые чашки 1 и 2. Вращение от ведущей чашки к ведомой передается промежуточными дисками 3, свободно вращающимися на осях 4. Угловая скорость ведомой чашки изменяется при одновременном повороте осей 4 вокруг шарнира 5.
Рис. 2.12. Торовый вариатор: 1 — ведущая торовая чашка;
2 — ведомая торовая чашка; 3 — диск; 4 — оси дисков; 5 — шарниры осей
При этом изменяются радиусы R1 и R2 чашек 1 и 2, т. е. R1 ≠ const; R2 ≠ const. Отсюда
и ≈ R2/R1 ≠ const.
Для торовых вариаторов диапазон варьирования
(2.33)
В какое положение необходимо поставить промежуточный диск 3, чтобы передаточное число и было равно единице (см. рис. 2.12)? Правильно ли показано направление вращения ведомого катка у торового вариатора. Как классифицировать рассматриваемый вариатор по взаимному расположению осей валов.
2.28. Вариатор с коническими катками (см. рис. 2.13). На ведущем и ведомом валу установлены катки 1 и 2 с рабочими поверхностями конической формы. Вращение от ведущего катка 7 к ведомому 2 передается промежуточным диском 3 цилиндрической формы, свободно вращающимся на оси 4. Пружина 5 обеспечивает необходимую силу нажатия для нормальной работы вариатора. При перемещении промежуточного диска 3 вдоль оси 4 радиусы 7?, и R2 ведущего 7 и ведомого 2 катков изменяются. В данной конструкции вариатора 7?, ф const; R2 ф const. Отсюда
и ≈ R2/R1 ≠ const.
Рис. 2.13. Конусный вариатор: 1 — ведущий каток: 2 — ведомый каток:
3 — промежуточный диск: 4 — ось диска; 5 — пружина
Диапазон варьирования для вариаторов с коническими катками
Д ≈ (Rmax/Rmm)2.
Влияет ли размер диаметра промежуточного диска 3 на передаточное число (см. рис. 2.13)? Передаточное число больше или меньше единицы при установке промежуточного диска 3, показанной на рис. 2.13? Как классифицировать вариатор с коническими катками по взаимному расположению осей валов?
2.29. В современном машиностроении применяют вариаторы с принципиально различными схемами. В данной книге рассмотрены наиболее распространенные конструкции фрикционных вариаторов.
Вариаторы находят практическое применение в машиностроении (в станках, прессах, конвейерах и т. п.), приборостроении и других отраслях промышленности.
2.30. Ответьте на вопросы контрольной карточки 2.3.
Контрольная карточка 2.3
Вопрос |
Ответы |
Код |
Как называется передача, показанная на рис. 2.11? |
Цилиндрическая фрикционная передача Лобовой вариатор Торовый вариатор Вариатор с коническими катками |
1
2 3 4 |
К каким передачам относятся вариаторы? |
С нерегулируемым передаточным числом С регулируемым передаточным числом |
5
6 |
В какое положение необходимо поместить зедущий каток / (см. рис. 2.11), чтобы увеличить угловую скорость ведомого катка 2? |
Влево к оси вала катка 2 В правое крайнее положение |
7 8 |
Какое направление вращения будет иметь ведомый каток 2 (см. рис. 2.11), если ведущий каток / переместить влево (на рисунке показано штриховыми линиями) |
По часовой стрелке Против часовой стрелки |
9 10 |
Как назвать деталь, обозначенную цифрой 3 на рис. 2.12? |
Ведущий каток Ведомый каток Промежуточный диск |
11 12 13 |
Ответы на вопросы
2.1. При буксовании ведомый каток 2 (см. рис. 2.1) останавливается, а зедущий 7 скользит по нему, при этом рабочие поверхности катков изнашиваются (образуются лыски).
2.2. Передача, изображенная на рис. 2.4, фрикционная с нерегулируемым передаточным числом, коническая, с пересекающимися осями валов, закрытая.
2.3. Достоинство — предохранение: от поломок недостатки — непостоянство передаточного числа и, повышенное и неравномерное изнашивание катков.
2.4. Не рекомендуется вследствие непостоянства передаточного числа. Пробуксовкой фрикционной передачи механизма привода диска (вращающего пластинку).
2.5. Ведомый каток во избежание образования лысок рекомендуют изготовлять из более износостойкого материала.
2.7. Наличием на рабочих поверхностях катков масляной пленки, невозможностью оптимизировать величину силы нажатия вследствие неравномерности передаваемой нагрузки при работе передачи. Передаточное число фрикционной передачи — отношение диаметра ведомого катка D2 к диаметру ведущего D1; u= D2/D1, (без учета проскальзывания).
2.8. Детали закрытых фрикционных передач работают в масляной ванне, поэтому сумма относительных потерь ∑Ψ этих передач меньше, чем открытых.
2.9. Усталостные трещины образуются на поверхности ведущего катка / з поверхностном слое и ведомого катка 2, за счет сил трения образуются
микротрещины (рис. 2.7). При вращении катков давление масла 3 возрастает, микротрещина увеличивается, и от поверхности катка 2 откалываются частицы металла.
2.11. В качестве прижимного устройства для цилиндрической фрикционной передачи могут служить пружины, рычаги с противовесом и т. п. (на рис. 2.6 прижимное устройство показано схематично стрелкой F1, на рис. 2.1 — прижимное устройство пружинного типа).
2.14. Формула для определения диаметра ведомого катка D2: u = D2/D1, отсюда D2 = D1u. Подставим вместо D, его значение из формулы (2.7). Тогда D2 = 2аu/(1 + и).
2.15. Максимальная сила трения Ff в месте контакта катков должна быть больше передаваемой окружной силы Ft, т. е. Ff≥ Ft.
2.16. Для цилиндрической фрикционной передачи со стальными, чугунными или текстолитовыми катками. Контактные напряжения σн зависят от значений D1, D2и b.
2.18. От силы нажатия Fr.
2.19. Для цилиндрических фрикционных передач, катки которых изготовлены (или облицованы) из фибры, резины, кожи и дерева. Материал не подчиняется закону Гука.
2.22. Для конической фрикционной передачи (см. рис. 2.10) ведущий вал 1 устанавливается на подвижные подшипники, ведомый 2 на неподвижные. Для обеспечения работоспособного состояния передачи катки D1 и D2 прижимаются один к другому (нажимным делается больший каток) специальным прижимным устройством рычажного, пружинного или другого типа (на рис. 2.10 Fr — сила нажатия катков).
2.24. Зависит. Чем больше коэффициент трения /, тем меньше сила прижатия Fr и наоборот. Сила прижатия зависит от среднего диаметра ведущего катка.
2.25.
Основная — диапазон регулирования.
Диапазон регулирования угловой скорости
ведомого катка — отношение наибольшей
(максимальной) угловой скорости
ведомого вала к наименьшей (минимальное)
его угловой скорости, т. е.
.
2.26. Если малый каток вариатора переместится к центру большого (рис. 2.11), то передаточное отношение уменьшится.
Лобовой вариатор — вариатор с пересекающимися валами.
2.27. При положении, осей 4 (см. рис. 2.12) промежуточных дисков 3, перпендикулярном к оси катков 1 и 2, передаточное число и = 1. Направление вращения ведомого катка по часовой стрелке. На рис. 2.5 показан вариатор с соосными валами.
2.28.
Диаметр промежуточного диска 3
(см.
рис. 2.13) не влияет на передаточное
число. Доказательство: uо6щ
= u1
u2;
и1
=
Rпр/R1;
u2
= R2/Rnp.
Отсюда
.
По рис. 2.13 и< 1, т. е. передача повышающая. Вариатор с параллельными валами.