
- •§ 1. Цели и задачи курса «Детали машин», его связь с другими предметами
- •§ 2. Основные направления в развитии машиностроения. Требования, предъявляемые к проектируемым машинам, узлам и деталям
- •§ 3. Основные критерии работоспособности и расчета деталей машин
- •§ 4. Проектировочные и проверочные расчеты
- •§ 5. Предельные и допускаемые напряжения. Коэффициент запаса прочности
- •§ 6. Краткие сведения о машиностроительных материалах и основах их выбора
- •Часть I
- •Глава 1
- •§ 1. Назначение и роль передач в машинах
- •§ 2. Классификация механических передач
- •§ 3. Основные кинематические и силовые отношения в передачах
- •§ 4. Механизмы преобразования одного вида движения в другой (общие сведения)
- •1.8. Рычажные механизмы.
- •1.9. Кулачковые механизмы.
- •1.10. Храповые механизмы.
- •1.11. Мальтийский механизм (крест).
- •Глава 2
- •§ 1. Общие сведения
- •§ 2. Геометрические параметры, кинематические и силовые соотношения во фрикционных передачах
- •§ 3. Цилиндрическая фрикционная передача. Устройство, основные геометрические и силовые соотношения
- •§ 4. Расчет на прочность цилиндрической фрикционной передачи
- •§ 5. Коническая фрикционная передача.
- •§ 6. Вариаторы
- •Глава 3
- •§ 1. Общие сведения и классификация зубчатых передач
- •§ 2. Краткие сведения о методах изготовления зубчатых колес, их конструкциях, материалах
- •§ 3. Основные элементы зубчатой передачи. Термины, определения и обозначения
- •§ 4. Основная теорема зубчатого зацепления.
- •§ 5. Краткие сведения о корригировании зацеплений
- •§ 6. Виды разрушений зубьев
- •§ 7. Цилиндрические прямозубые передачи. Устройство и основные геометрические соотношения
- •§ 8. Расчет зубьев цилиндрической прямозубой передачи на изгиб
- •3.36. В каком случае проводят проверочный расчет зубчатой передачи на изгиб?
- •§ 9. Расчет цилиндрической прямозубой передачи на контактную прочность
- •§ 10. Последовательность проектировочного расчета цилиндрической прямозубой передачи
- •§11. Цилиндрические косозубые и шевронные зубчатые передачи. Устройство и основные геометрические и силовые соотношения
- •§ 12. Расчет зубьев цилиндрической косозубой и шевронной передач на изгиб
- •§ 13. Расчет цилиндрической косозубой и шевронной передач на контактную прочность
- •§ 14. Последовательность проектировочного расчета цилиндрической косозубой передачи
- •§ 15. Конические зубчатые передачи. Устройство и основные геометрические и силовые соотношения
- •§ 16. Расчет зубьев прямозубой конической передачи на изгиб
- •§ 17. Расчет конических прямозубых передач на контактную прочность
- •§ 18. Последовательность проектировочного расчета конической зубчатой передачи
- •§ 19. Зубчатые передачи с зацеплением Новикова. Устройство, основные геометрические соотношения
- •§ 20. Расчет передачи с зацеплением Новикова на контактную прочность
- •§ 21. Планетарные зубчатые передачи. Устройство передачи и расчет на прочность
- •3.88. Достоинства и недостатки планетарных передач.
- •§ 22. Волновые зубчатые передачи. Устройство передачи и расчет на прочность
- •Глава 4
- •§ 1. Устройство и назначение, достоинства и недостатки
- •§ 2. Расчет передачи винт-гайка на прочность
- •Глава 5
- •§ 1. Общие сведения, устройство передачи, материалы, область применения, достоинства и недостатки
- •§ 2. Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком
- •§ 3. Основные критерии работоспособности червячных передач и расчет их на прочность
- •§ 4. Расчет червячной передачи на контактную прочность
- •§ 5. Расчет червячной передачи на прочность по напряжениям изгиба
- •§ 6. Тепловой расчет червячной передачи
- •§ 7. Последовательность проектировочного расчета червячных передач
- •Глава 6
- •§ 1. Общие сведения
- •§ 2. Плоскоременная передача.
- •§ 3. Геометрия передачи, кинематические соотношения и кпд плоскоременной передачи
- •§ 4. Клиноременная передача.
- •§ 5. Основы теории расчета ременных передач. Силы и напряжения в ремнях, кривые скольжения и допускаемые полезные напряжения
- •§ 6. Расчет плоскоременной передачи по тяговой силе. Долговечность передачи
- •§ 7. Расчет клиноременной передачи на тяговую способность и долговечность
- •§ 1. Цепные передачи
- •§ 2. Конструкции приводных цепей и звездочек
- •§ 3. Основные геометрические и кинематические соотношения, кпд передачи
- •§ 4. Силы в ветвях цепи и критерии работоспособности цепной передачи
- •§ 5. Методика подбора и проверки цепей с учетом их долговечности
- •§ 6. Цепные вариатор
- •Часть II
- •Глава 8 валы и оси
- •§ 1. Назначение, конструкция и материалы валов и осей
- •§ 2. Критерии работоспособности и расчет валов и осей
- •§ 3. Расчет осей на статическую прочность
- •§ 4. Приближенный расчет валов на прочность
- •§ 5. Уточненный расчет валов (осей) на выносливость
- •§ 6. Расчет осей и валов на жесткость
- •Глава 9
- •§ 1. Назначение и краткая характеристика основных типов, достоинства и недостатки, область применения шпоночных и шлицевых соединений
- •§ 2. Расчет на прочность соединений с призматическими шпонками
- •§ 3. Расчет на прочность прямобочных шлицевых (зубчатых) соединений
- •§ 4. Штифтовые и профильные соединения
- •§ 5. Соединение деталей с гарантированным натягом
- •Глава 10
- •§ 1. Назначение, типы, область применения, разновидности конструкций подшипников скольжения и подпятников, материалы для их изготовления
- •10.2. Конструкции подшипников скольжения.
- •§ 2. Условный расчет подшипников скольжения и подпятников
- •§ 3. Работа подшипников скольжения при жидкостном режиме смазки и понятие об их расчете
- •Глава 11 подшипники качения
- •§ 1. Общие сведения. Классификация и область применения
- •§ 2. Сравнительная характеристика подшипников качения и скольжения
- •§ 3. Методика подбора подшипников качения
- •§ 4. Способы повышения долговечности подшипниковых узлов
- •§ 5. Конструкции узлов
- •§ 6. Смазывание подшипников качения
- •§ 7. Уплотнения в подшипниковых узлах
- •Глава 12 муфты
- •§ 1. Общие сведения
- •§ 2. Жесткие (глухие) муфты
- •§ 3. Компенсирующие муфты
- •§ 4. Сцепные муфты
- •§ 5. Самоуправляемые муфты
- •§ 6. Предохранительные муфты
- •§ 7. Краткие сведения о выборе и расчете муфт
- •Часть III
- •Глава 13
- •§ 1. Виды резьбовых соединений
- •§ 2. Конструкции резьбовых деталей и применяемые материалы
- •§ 3. Зависимость между моментом, приложенным к гайке, и осевой силой
- •§ 4. Расчет резьбового соединения на прочность при осевом и поперечном статическом нагружении
- •§ 6. Некоторые рекомендации по расчету на прочность, включающего группу болтов
- •Глава 14
- •§ 1. Общие понятия, образование заклепочных швов, достоинства, недостатки и область применения
- •§ 2. Классификация заклепочных швов, конструкции заклепок и их материалы
- •Контрольная карточка 14.1
- •§ 3. Расчет прочных заклепочных швов
- •§ 4. Проектировочный расчет прочных заклепочных швов при заданной нагрузке и заданном типе шва
- •Глава 15
- •§ 1. Общие сведения о сварных соединениях
- •§ 2. Классификация и разновидности сварных соединений (швов)
- •§ 3. Расчет сварных стыковых и нахлесточных соединений
- •§ 4. Краткие сведения о клеевых соединениях
- •Глава 1
- •Глава 2
- •Глава 3
§ 4. Расчет на прочность цилиндрической фрикционной передачи
2.16. Проверочный расчет передач с металлическими катками.
Основным критерием работоспособности фрикционных передач с указанными катками является усталостная прочность. Подставив в формулу (2.4) формулу Герца (2.5) для определения наибольших контактных напряжений и выполнив некоторые преобразования, получим формулу проверочного расчета
(2.15)
где а — межосевое расстояние, мм; Епр — приведенный модуль упругости, МПа (см. шаг 2.9); f— коэффициент трения (см. табл. 2.1); Т1 — момент на ведущем валу, Н • мм; Кс — коэффициент запаса сцепления (см. шаг 2.15); и ≥ 1 — передаточное число; b — рабочая ширина обода катка, мм; [σ]н — допускаемое контактное напряжение для менее прочного материала, МПа (табл. 2.2).
Таблица 2.1. Значения коэффициента трения скольжения для различных материалов
Материал контактирующей пары |
f |
Сталь по стали или по чугуну (со смазочным материалом) |
0,04-0,05 |
Чугун (всухую) по: |
|
стали или чугуну |
0,1-0,18 |
текстолиту |
0,15-0,25 |
фибре |
0,15-0,30 |
коже |
0,20-0,50 |
прессованной бумаге |
0,40-0,50 |
резине |
0,35-0,70 |
ферродо |
0,30-0,35 |
Таблица 2.2. Допускаемые контактные напряжения, модуль упругости для катков из различных материалов
Материал |
[σ]н |
Е |
МПа |
||
Закаленная сталь (при хорошем смазывании) |
600-800 |
2,1 · 105 |
Серый чугун марок от СЧ 10 до СЧЗО |
420—720 |
1,1 · 105 |
Текстолит |
80-100 |
6 · 103 |
Для какой фрикционной передачи приемлема формула (2.15)? От каких геометрических параметров зависит значение σH?
2.17. Проектировочный расчет. Подставив выражение (2.9) в формулу (2.15) и выполнив некоторые преобразования, получим формулу проектировочного расчета для определения межосевого расстояния фрикционной передачи из условия контактной прочности:
(2.16)
где
—
коэффициент ширины обода катка по
межосевому расстоянию,
.
2.18. Проверочный расчет передач с неметаллическими катками (текстолит, фибра, резина и т. п.). Для этих передач основным критерием работоспособности является износостойкость. Материал не подчиняется закону Гука.
Нормальная нагрузка на единицу длины контактных линий
(2.17)
где T1 — момент на ведущем катке, Н • мм; Кс — коэффициент запаса сцепления (см. табл. 2.1); u ≥ 1 — передаточное число; b — ширина обода меньшего катка, мм; f— коэффициент трения (см. табл. 2.1); а - межосевое расстояние, мм; [q] — допускаемая нагрузка на единицу длины контактной линии для менее прочного материала, Н/мм.
Значения [q] для некоторых материалов контактирующих пар (один материал сталь или чугун) следующие:
[q], Н/мм
Фибра...........34-39
Резина...........10—30
Кожа.........14,5-24,5
Дерево..........2,4-4,9
От каких силовых факторов зависит значение q?
2.19. Проектировочный расчет.
Подставив в формулу (2.17) b = аΨа и решив уравнение относительно а, получим формулу проектировочного расчета для определения межосевого расстояния фрикционной передачи из условия износостойкости:
(2.18)
Для какой фрикционной передачи приемлема формула (2.18)?
2.20. Последовательность проектировочного расчета.
1. В зависимости от условий работы выбирают материал катков и по табл. 2.2 принимают [σ]Н , Е или [q] для менее прочного материала.
2. По табл. 2.1 задаются коэффициентом трения f, после чего принимают коэффициент Ψa = 0,2 ÷ 0,4; Кс (см. шаг 2.15).
3. По формуле (2.16) или (2.18) рассчитывают межосевое расстояние.
4. Определяют геометрические размеры катков: D1 — диаметр ведущего катка [формула (2.7)], D2 — ведомого (2.8); b — ширина обода катков (2.9).
По формуле (2.6) уточняют фактическое межосевое расстояние а.
5. По формуле (2.14) определяют силу нажатия.
6. Передачу проверяют по окружной скорости v < vmax= (7 ÷ 10) м/с.
7. Проверочный расчет передачи на прочность проводят по формулам: (2.15) или (2.17). При этом следует иметь в виду, что допускаемая недогрузка передачи не более 10 %, перегрузка — не более 5 %.
2.21. Ответить на вопросы карточки 2.2.
Контрольная карточка 2.2
Вопрос |
Ответы |
Код |
Как называется передача, показанная на рис. 2.8? |
Цилиндрическая фрикционная с гладкими катками Клинчатая фрикционная Коническая фрикционная Червячная |
1
2 3 4 |
Какой из указанных недостатков фрикционной передачи не дает возможность применения для точных делительных механизмов |
Непостоянство передаточного отношения Большие нагрузки на валы Низкий КПД Ограниченная величина окружной скорости |
5 б 7 8 |
Формула для определения диаметра ведомого катка цилиндрической фрикционной передачи |
aΨa |
9
10
11
12 |
Для чего в расчетные формулы вводят коэффициент Kс? |
Для увеличения КПД передачи Для снижения пробуксовки катков при перегрузках Для снижения коэффициента трения |
13
14 15 |
Как уменьшить межосевое расстояние а при проектировании фрикционной передачи (без увеличения размеров и нагруженности передачи) |
Выбрать более прочный материал Увеличить коэффициент Кс Увеличить коэффициент f Увеличить коэффициент Ψа |
16 17 18 19 |