
- •Конспект лекций
- •Содержание
- •1 Основы зонной теории Классификация твердых тел по проводимости
- •Энергетическая диаграмма твердого тела
- •Энергетическая диаграмма твердого тела выглядит:
- •Ширина запрещенной зоны влияет на электропроводность:
- •2 Внутреннее строение полупроводников
- •2.1 Примесная проводимость полупроводника
- •2.1.1 Донорная (электронная) проводимость
- •2.1.2 Акцепторная (дырочная) проводимость
- •2.2 Токи в полупроводниках
- •2.2.1 Дрейфовый ток
- •2.2.2 Диффузионный ток
- •3 Контактные явления
- •3.1.1Обратное включение p-n перехода
- •3.1.2 Прямое включение p-n перехода
- •3.1.3 Вольт-амперная характеристика перехода Выпрямляющий и омический контакты
- •3.2 Емкости p-n перехода
- •3.2.1 Барьерная емкость
- •3.2.2 Диффузионная емкость
- •3.3 Пробой p-n перехода
- •Обратная ветвь вах при пробое:
- •Виды пробоев:
- •3.3.1 Тепловой пробой
- •3.3.2 Электрический пробой
- •А) Лавинный пробой
- •Б) Туннельный пробой
- •Механизм туннельного пробоя:
- •4 Внутренний и внешний фотоэффект
- •4.1 Внутренний фотоэффект
- •4.2 Внешний фотоэффект
- •5 Полупроводниковые диоды
- •Обозначение:
- •5.1 Буквенно-цифровое обозначение (бцо) диодов бцо диодов содержит 4 элемента:
- •5.2 Выпрямительный диод
- •Механизм сглаживания пульсаций:
- •5.3 Стабилитрон
- •Применение стабилитронов:
- •5.4 Буквенно-цифровое обозначение стабилитронов бцо стабилитронов состоит из четырех элементов:
- •5.6 Светодиод
- •Принцип работы:
- •Конструктивно светодиоды выполняются:
- •Применение:
- •6 Транзисторы
- •6.1.Биполярные транзисторы
- •Обозначение:
- •6.1.1 Назначение областей транзистора
- •6.1.2 Режимы работы транзистора
- •6.1.3 Буквенно-цифровое обозначение транзисторов
- •6.1.4 Принцип работы транзистора
- •6.1.5 Основные коэффициенты, характеризующие работу транзистора
- •Статические вах транзистора оэ
- •6.1.10 Первичные параметры транзистора
- •Пример расчета h-параметров транзистора оэ
- •Примечание:
- •6.2 Полевые транзисторы
- •Полевой транзистор содержит 3 электрода:
- •Полевые транзисторы бывают:
- •6.2.1 Полевой транзистор с p-n затвором
- •Обозначение:
- •Принцип действия полевого транзистора
- •Стоковые (выходные) характеристики
- •Стоко-затворные (передаточные) характеристики
- •Обозначение:
- •7 Тиристоры
- •7.1 Динисторы
- •Обозначение:
- •Вах динистора
- •7.2 Тринисторы
- •Пример: ку 201а, ку 202а
- •Вах тринистора
- •8 Интегральные микросхемы (имс)
- •8.1 Основные понятия микроэлектроники
- •Степень интеграции
- •8.2 Тенденции развития имс
- •Эволюция развития бис:
- •Проблемы:
- •8.3 Интегральные микросхемы логических элементов
- •8.3.1 Транзисторно-транзисторная логика (ттл)
- •Ттл с простым инвертором (и-не)
- •8.3.2 Эмиттерно-связанная логика (эсл)
- •Характерная особенность схемы:
- •Принцип работы переключателя тока:
- •8.3.4 Комплементарная моп-транзисторная логика (кмоп тл)
- •Кмоп тл (или-не)
- •Кмоп тл (и-не)
- •Преимущества кмоп тл перед моп тл:
- •9 Усилительные устройства
- •9.1 Структурная схема усилителя
- •9.2 Классификация усилителей
- •По диапазону усиливаемых частот:
- •9.3 Коэффициенты усиления
- •9.4 Линейные искажения
- •9.5 Обратная связь в усилителях
- •Структурная схема усилителя с ос:
- •Виды обратной связи
- •9.6 Питание усилителей по постоянному току
- •Смещение фиксированным током базы
- •Назначение элементов:
- •Назначение элементов:
- •Коллекторная стабилизация
- •9.8 Анализ ачх шпу
- •Факторы, оказывающие влияние на ачх в области нч и вч:
- •Рассмотрим область верхних частот
- •Рассмотрим область нижних частот
- •Рассмотрим область средних частот
- •9.9 Резонансные усилители
- •Резонансный усилитель напряжения (рун)
- •Принцип усиления:
- •Недостаток схемы:
- •Автотрансформаторное включение контура
- •Многоконтурный рун
- •Упч с полосовым фильтром
- •Ачх такого усилителя:
- •9.10 Оконечные каскады (усилители мощности)
- •Однотактный трансформаторный усилитель мощности (ум)
- •Принцип работы параметрической стабилизации:
- •Бестрансформаторные ум
- •Принцип работы:
- •9.11 Усилители постоянного тока (упт)
- •Ачх упт выглядит:
- •9.11.1 Дрейф нуля
- •Основные причины дрейфа нуля:
- •Дрейф нуля содержит монотонную медленно меняющуюся составляющую и случайные отклонения от неё – флуктуации.
- •Меры по уменьшению дрейфа нуля:
- •9.11.2 Дифференциальный усилитель (ду)
- •Назначение элементов:
- •9.11.3 Операционные усилители (оу)
- •Обозначение оу:
- •Параметры оу
- •Инвертирующий оу
- •Не инвертирующий oу
- •Интегрирующая rc-цепь. Интегратор
- •Рассмотрим частные случаи:
- •Дифференцирующая rc-цепь. Дифференциатор
- •10 Генераторы
- •10.1 Самовозбуждение автогенераторов
- •Временные диаграммы:
- •Триггер называется симметричным, если:
- •10.3.2 Мультивибратор
- •Симметричный автоколебательный мультивибратор
- •Список литературы
Принцип работы:
Под действием прямого напряжения ОНЗ диффундируют в соседние области, где они рекомбинируют с зарядами противоположного знака. Рекомбинация сопровождается переходом электронов из ЗП в ВЗ. При этом выделяется энергия в виде квантов излучения .
W(эВ)
Ө
WП
hv
WВ
Для
получения видимого
излучения, необходимо, чтобы ширина
запрещенной зоны находилась в пределах:
.
Отсюда
видно, что германий и кремний для
изготовления светодиодов непригодны,
т.к. они имеют ширину запрещенной зоны
меньшую, чем необходимо для видимого
излучения (
).
Для изготовления светодиодов применяется фосфид галлия (GaP), карбид кремния (SiC), тройные соединения, называемые твердыми растворами и состоящими из галлия, алюминия и мышьяка (Ga, Al, As) или галлия, мышьяка, фосфора (Ga, As, P).
Внесение в полупроводник некоторых примесей позволяет получить свечение различного цвета.
Кроме
светодиодов, дающих видимое свечение,
используются
светодиоды инфракрасного излучения на
основе арсенида галлия (GaAs),
у которого
.
Они применяются в фотореле, различных
датчиках, пультах, входят в состав
некоторых оптронов.
Конструктивно светодиоды выполняются:
В непрозрачных корпусах с линзой, обеспечивающей направленное излучение.
В прозрачном пластмассовом корпусе, создающем рассеянное излучение.
В бескорпусном варианте.
Применение:
Индикация, реле, датчики, пульты.
6 Транзисторы
6.1.Биполярные транзисторы
Биполярный транзистор – это полупроводниковый прибор с двумя взаимодействующими p-n переходами и тремя выводами.
Биполярным транзистор называется потому, что его работа основана на использовании носителей заряда обоих знаков (электронов и дырок).
Биполярные транзисторы бывают p-n-p и n-p-n проводимости. В транзисторах p-n-p проводимости стрелка направлена к базе, основными носителями заряда являются дырки. В транзисторах n-p-n проводимости стрелка направлена от базы, основными носителями заряда являются электроны. И в том, и в другом случае стрелка указывает направление эмиттерного тока.
Обозначение:
Если транзистор рассматривать как узловую точку, тогда справедлив 1-й закон Кирхгофа (сумма входящих токов равна сумме выходящих), т.е.:
– основное
уравнение транзистора
Из
этого выражения вытекает:
-
это максимальный ток транзистора.