
- •Билет№1
- •2. Электромагнитные излучения различных диапазонов длин волн. Свойства и применения этих излучений.
- •Билет№2
- •1. Принцип действия тепловых двигателей кпд теплового двигателя. Тепловые двигатели и охрана окружающей среды.
- •2. Методы регистрации ионизирующих излучений.
- •Билет№3
- •1. Электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление проводников.
- •2. Электромагнитная природа света. Волновые и квантовые свойства света.
- •Билет№4
- •2. Развитие представлений о строении атома. Квантовые постулаты Бора. Излучение и поглощение света.
- •Билет№5
- •1. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.
- •Билет№6
- •2. Гармонические колебания. Амплитуда, период и частота колебаний маятника.
- •Билет№7
- •1. Механическая работа. Мощность. Кинетическая и потенциальная энергия. Закон сохранения энергии в механике.
- •2. Звуковые волны. Скорость звука. Громкость звука и высота тона.
- •Билет№8
- •Идеальный газ. Основное уравнение мкт идеального газа. Температура и ее измерение. Абсолютная температурная шкала.
- •Билет№9
- •1 .Силы трения. Коэффициент трения скольжения
- •Трансформатор. Передача электроэнергии.
- •Билет№10
- •1. Архимедова сила. Условия плавания тел.
- •2. Закон преломления света.
- •Билет№11
- •1. Равномерное движение по окружности. Центростремительное ускорение.
- •2.Электроемкость. Конденсаторы. Энергия заряженного конденсатора.
- •Билет№12
- •1. Первый закон Ньютона Инерционная система. Третий закон Ньютона.
- •2.Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта. Постоянная Планка.
- •Билет№13
- •1. Закон сохранения импульса. Реактивное движение.
- •Билет№14
- •1. Внутренняя энергия. Количество теплоты. Работа в термодинамики. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам.
- •Билет№15
- •1. Основные положения молекулярно – кинетической теории и их опытное обоснование.
- •2. Линза. Фокусное расстояние линзы. Построение изображения в линзах.
- •Билет№16
- •1. Электрическое поле и его материальность. Напряженность электрического поля. Разность потенциалов.
- •2. Состав ядра атома. Изотопы. Взаимосвязь массы и энергии. Энергия связи ядра.
- •Билет№17
- •1.Работа и мощность тока. Электродвижущая сила. Закон Ома для полной цепи.
- •2. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения.
- •Билет№18
- •1. Магнитное взаимодействие токов. Магнитное поле. Индукция магнитного поля. Сила, действующая на проводник с током. Закон Ампера.
- •Билет№19
- •1. Работа электрического поля при перемещении заряда. Разность потенциалов.
- •2. Деление ядер урана. Ядерный реактор. Термоядерная реакция.
- •Билет№20
- •1. Кристаллические и аморфные тела. Создание материалов с заданными свойствами.
- •2. Природа электрического тока в полупроводниках. Собственная и примесная проводимость.
- •Билет№21
- •1. Деформация тел. Виды деформации. Закон Гука. Применение деформации в технике.
- •2. Свободные электрические колебаний в контуре. Превращение энергии в колебательном контуре. Собственная частота колебания в контуре.
- •Билет№22
- •1. Превращение энергии при гармонических колебаниях. Вынужденные колебания . Резонанс.
- •2. Электрический ток в газах. Несамостоятельный и самостоятельный разряд и их использование в технике.
- •Билет№23
- •1. Гравитационные силы. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.
- •2. Электромагнитная индукция. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.
- •Билет№24
- •1. Давление. Закон Паскаля для жидкостей и газов. Сообщающиеся сосуды.
- •2. Интерференция волн. Интерференция света. Когерентные источники.
- •Билет№25
- •1.Самоиндукция. Индуктивность. Энергия магнитного поля.
- •2.Дифракция волн. Дифракция света. Дифракционная решетка.
Билет№14
1. Внутренняя энергия. Количество теплоты. Работа в термодинамики. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам.
Каждое
тело имеет вполне определенную структуру,
оно состоит из частиц, которые хаотически
движутся и взаимодействуют друг с
другом, поэтому любое тело обладает
внутренней энергией. Внутренняя энергия
— это величина, характеризующая
собственное состояние тела, т. е. энергия
хаотического (теплового) движения
микрочастиц системы
(молекул, атомов, электронов, ядер и т.
д.) и энергия взаимодействия этих частиц.
Внутренняя энергия одноатомного
идеального газа определяется по формуле
U = 3/2 • т/М • RT.
Внутренняя энергия тела может изменяться
только в результате его взаимодействия
с другими телами. Существует два способа
изменения внутренней энергии: теплопередача
и совершение механической работы
(например, нагревание при трении или
при сжатии, охлаждение при
расширении).
Теплопередача — это изменение внутренней
энергии без совершения работы: энергия
передается от более нагретых тел к менее
нагретым. Теплопередача бывает трех
видов: теплопроводность (непосредственный
обмен энергией между хаотически
движущимися частицами взаимодействующих
тел или частей одного и того же тела);
конвекция (перенос энергии потоками
жидкости или газа) и излучение (перенос
энергии электромагнитными волнами).
Мерой переданной энергии при теплопередаче
является количество теплоты (Q).
Эти способы количественно объединены
в закон сохранения энергии, который для
тепловых процессов читается так:
изменение внутренней энергии замкнутой
системы равно сумме количества теплоты,
переданной системе, и работы внешних
сил, совершенной над системой.
,
где
—
изменение внутренней энергии, Q —
количество теплоты, переданное системе,
А — работа внешних сил. Если система
сама совершает работу, то ее условно
обозначают А*. Тогда закон сохранения
энергии для тепловых процессов, который
называется первым законом термодинамики,
можно записать так:
,
т.е. количество теплоты, переданное
системе, идет на совершение системой
работы и изменение ее внутренней
энергии. При
изобарном нагревании газ совершает
работу над внешними силами
,
где V1 и V2 — начальный и конечный объемы
газа. Если процесс не является изобарным,
величина работы может быть определена
площадью фигуры ABCD, заключенной между
линией, выражающей зависимость p(V), и
начальным и конечным объемами газа V
Рассмотрим применение первого закона
термодинамики к изопроцессам, происходящим
с идеальным газом.
В изотермическом процессе температура
постоянная, следовательно, внутренняя
энергия не меняется. Тогда уравнение
первого закона термодинамики примет
вид:
,
т. е. количество теплоты, переданное
системе, идет на совершение работы при
изотермическом расширении, именно
поэтому температура не изменяется.
В изобарном процессе газ расширяется
и количество теплоты, переданное газу,
идет на увеличение его внутренней
энергии и на совершение им работы:
.
При изохорном процессе газ не меняет
своего объема, следовательно, работа
им не совершается, т. е. А = 0, и уравнение
первого закона имеет вид
,
т. е. переданное количество теплоты идет
на увеличение внутренней энергии
газа. Адиабатным
называют процесс, протекающий без
теплообмена с окружающей средой. Q = 0,
следовательно, газ при расширении
совершает работу за счет уменьшения
его внутренней энергии, следовательно,
газ охлаждается,
Кривая,
изображающая адиабатный процесс,
называется адиабатой.
2.
Электрический так в растворах и расплавах
электролитов. Закон электролиза.
Электролиты – водные растворы солей, кислот и щелочей. При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Этот процесс называется электролитической диссоциацией. Степень диссоциации, т.е. доля молекул в растворенном веществе, распавшихся на ионы, зависит от температуры, концентрации раствора и диэлектрической проницаемости ε растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов. Ионы разных знаков при встрече могут снова объединится в нейтральные молекулы – рекомбинировать. Носителями заряда в водных растворах или расплавах электролитов являются положительно или отрицательно заряженные ионы. Поскольку перенос заряда в водных растворах или расплавах электролитов осуществляется ионами, такую проводимость называют ионной.
Электролизом называют процесс выделения на электроде чистого вещества, связанный с окислительно-восстановительными реакциями.(или такая формулировка: Электролиз – это выделение веществ из электролита с последующим осаждением на электродах; или такая: Электролиз – это процесс выделения током химических составляющих проводника).
Фарадей сформулировал два закона электролиза:
Масса вещества, выделяющегося из электролита на электродах, оказывается тем большей, чем больший заряд прошел через электролит: m~q, или m~It, где I – сила тока, t – время его прохождения через электролит. Коэффициент k, превращающий эту пропорциональность в равенство m=kIt, называется электрохимическим эквивалентом вещества.
Электрохимический эквивалент тем больший, чем больше масса моля вещества и чем меньше его валентность: k~M/n (эта дробь называется химическим эквивалентом вещества). Коэффициент, превращающий эту пропорциональность в равенство, назвали постоянной Фарадея F:k=1/F•M/n. Постоянная Фарадея равна произведению двух констант – постоянной Авогадро и заряда электрона: F=6,02 10²³ моль‾¹ •1,6•10 в степени -19Кл≈9,6•10 в степени 4 Кл/моль. Итак: k=1/F•M/n.
Подставив (2) в (1): m=MIt/Fn. Это объединенный закон Фарадея для электролиза.
Электролиз применяется:
Гальванопластика, т.е. копирование рельефных предметов.
Гальваностегия, т.е. нанесение на металлические изделия тонкого слоя другого металла (хром, никель, золото).
Очистка металлов от примесей (рафинирование металлов).
Электрополировка металлических изделий. При этом изделие играет роль анода в специально подобранном электролите. На микронеровностях (выступах) на поверхности изделия повышается электрический потенциал, что способствует их первоочередному растворению в электролите.
Получение некоторых газов (водород, хлор).
Получение металлов из расплавов руд. Именно так добывают аллюминий